

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0170 of 13 February 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Soudal injection system VE-SF

Metal Injection anchors for use in masonry

SOUDAL N.V. Everdongenlaan 18-20 2300 Turnhout BELGIEN

SOUDAL

66 pages including 3 annexes which form an integral part of this assessment

EAD 330076-00-0604, Edition 11/2017

European Technical Assessment ETA-21/0170

Page 2 of 66 | 13 February 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0170

English translation prepared by DIBt

Page 3 of 66 | 13 February 2021

Specific Part

1 Technical description of the product

The "Soudal Injection System VE-SF" is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar Soudafix VE400-SF or Soudafix VE400-SF Arctic, a perforated sleeve and an anchor rod with hexagon nut and washer or an Internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance	See Annexes C 1 to C 48
Displacements	See Annex C 6 to C 48
Durability	See annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-00-0604 the applicable European legal act is: [97/177/EC].

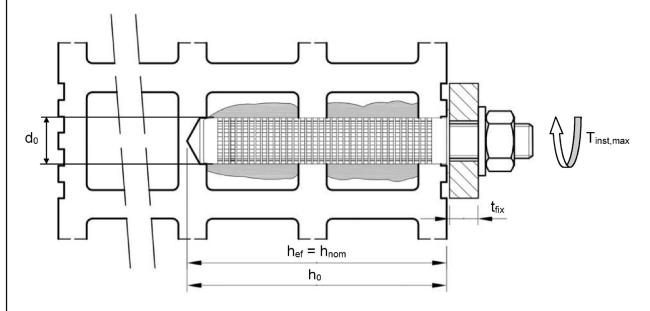
The system to be applied is: 1

European Technical Assessment ETA-21/0170

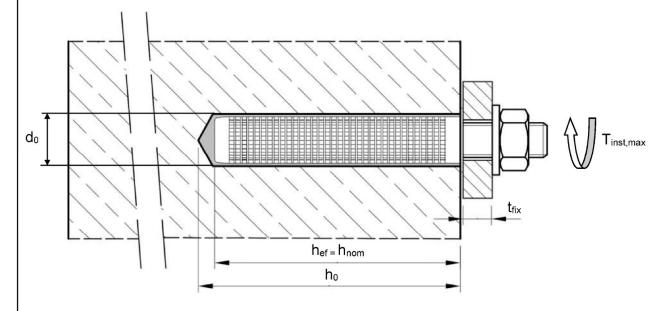
Page 4 of 66 | 13 February 2021

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 February 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin beglaubigt: Baderschneider

Installation in hollow brick; threaded rod and Internal threaded rod with sleeve

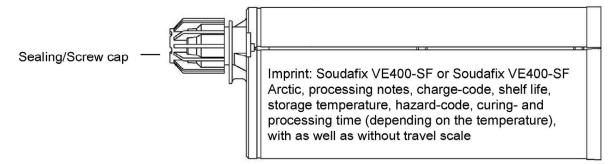
Installation in solid brick; threaded rod and Internal threaded rod with or without sleeve

 $h_{ef} = h_{nom}$ = effective anchorage depth d_0 = nominal drill hole diameter

 h_0 = drill hole depth $T_{inst,max}$ = Max installation torque moment

 t_{fix} = thickness of fixture

Product description Installed condition Annex A 1


Cartridge: Soudafix VE400-SF or Soudafix VE400-SF Arctic

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml Cartridge: (Type: coaxial)

Imprint: Soudafix VE400-SF or Soudafix VE400-SF Arctic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

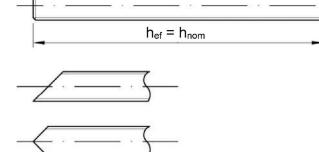
235 ml, 345 ml up to 360 ml and 825 ml Cartridge (Type: "side-by-side")

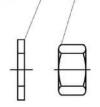
165 ml and 300 ml Cartridge (Type: "foil tube")

Imprint: Soudafix VE400-SF or Soudafix VE400-SF Arctic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static mixer

CRW 14W


Soudal injection system VE-SF Product description Injection system Annex A 2



Threaded Rod M8, M10, M12, M16

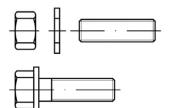
Mark of the embedment depth

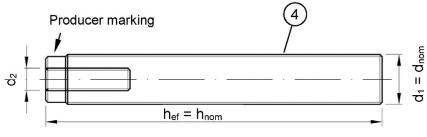
1

3)

2

Commercial standard rod with:


Materials, dimensions and mechanical properties acc. to Table A1


Lges

- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Internal threaded rod IG-M6, IG-M8, IG-M10

Threaded rod or screw

Producer marking: e.g.

Marking Internal thread

Mark

Thread size (Internal thread) М8 additional mark for stainless steel Α4 **HCR**

additional mark for high-corrosion resistance steel

Soudal injection system VE-SF	
Product description Anchor rods	Annex A 3

c plated ≥ 5 -dip galvanised ≥ 44 crardized ≥ 45 Threaded rod Hexagon nut Washer Internal threaded anchor rod less steel A2 (Materless steel A4 (Materless steel A4)	property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	042:19 461:20 7668:2 4.6 4.8 5.6 5.8 8.8 4 5 8 dip galv 3, EN I	99 or 09 and EN ISO 10684:2004+A 016 Characteristic steel ultimate tensile strength $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8	Characteristic steel yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ 3 3 2000 or EN ISO 7094:2000) Characteristic steel yield strength
c plated ≥ 5 -dip galvanised ≥ 44 crardized ≥ 45 Threaded rod Hexagon nut Washer Internal threaded anchor rod less steel A2 (Materless steel A4 (Materless steel A4)	μm acc. to EN ISO 40 D μm acc. to EN ISO 12 D μm acc. to EN ISO 13 Property class acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	042:19 461:20 7668:2 4.6 4.8 5.6 5.8 8.8 4 5 8 dip galv 3, EN I	99 or 09 and EN ISO 10684:2004+A 016 Characteristic steel ultimate tensile strength $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	Characteristic steel yield strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ 3 3 2000 or EN ISO 7094:2000) Characteristic steel yield strength
Hexagon nut Washer nternal threaded anchor rod less steel A2 (Matelless steel A4 (M	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	4.8 5.6 5.8 8.8 4 5 8 dip galv 6, EN IS	tensile strength $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $for anchor rod class 4.6 or 4.8 \text{ for anchor rod class 5.6 or 5.8 }$ $for anchor rod class 8.8 \text{ vanised or sherardized SO 7089:2000, EN ISO 7093:2}$ $Characteristic steel ultimate tensile strength$	strength $f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ 3 3 3 4000 or EN ISO 7094:2000) Characteristic steel yield strength
Hexagon nut Washer nternal threaded anchor rod less steel A2 (Matelless steel A4 (M	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	4.8 5.6 5.8 8.8 4 5 8 dip galv 6, EN IS	f _{uk} = 400 N/mm ² f _{uk} = 400 N/mm ² f _{uk} = 500 N/mm ² f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	f _{yk} = 240 N/mm ² f _{yk} = 320 N/mm ² f _{yk} = 300 N/mm ² f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² 3 3 4000 or EN ISO 7094:2000) Characteristic steel yield strength
Hexagon nut Washer nternal threaded anchor rod less steel A2 (Matelless steel A4 (M	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	5.6 5.8 8.8 4 5 8 dip galva 6, EN IS	f _{uk} = 500 N/mm² f _{uk} = 500 N/mm² f _{uk} = 800 N/mm² for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	f _{yk} = 300 N/mm ² f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² 3 3 2000 or EN ISO 7094:2000) Characteristic steel yield strength
Hexagon nut Washer nternal threaded anchor rod less steel A2 (Matelless steel A4 (M	acc. to EN ISO 898-1:2013 acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	5.8 8.8 4 5 8 dip galv 6, EN I	f _{uk} = 500 N/mm² f _{uk} = 500 N/mm² f _{uk} = 800 N/mm² for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	f _{yk} = 300 N/mm ² f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² 3 3 2000 or EN ISO 7094:2000) Characteristic steel yield strength
Masher nternal threaded anchor rod less steel A2 (Matelless steel A4 (Matelless) steel ste	acc. to EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	8.8 4 5 8 dip galv 6, EN I	f _{uk} = 800 N/mm² for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	f _{yk} = 640 N/mm² 3 3 2000 or EN ISO 7094:2000) Characteristic steel yield strength
Masher nternal threaded anchor rod less steel A2 (Matelless steel A4 (Matelless) steel ste	EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006 Property class acc. to EN ISO 898-1:2013	4 5 8 dip galv 6, EN I	for anchor rod class 4.6 or 4.8 for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	2000 or EN ISO 7094:2000) Characteristic steel yield strength
Masher nternal threaded anchor rod less steel A2 (Matelless steel A4 (Matelless) steel ste	EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006 Property class acc. to EN ISO 898-1:2013	5 8 dip galv 6, EN I	for anchor rod class 5.6 or 5.8 for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	2000 or EN ISO 7094:2000) Characteristic steel yield strength
Masher nternal threaded anchor rod less steel A2 (Matelless steel A4 (Matelless) steel ste	EN ISO 898-2:2012 Steel, zinc plated, hot-(e.g.: EN ISO 887:2006 Property class acc. to EN ISO 898-1:2013	dip galv 6, EN l	for anchor rod class 8.8 vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	2000 or EN ISO 7094:2000) Characteristic steel yield strength
nternal threaded anchor rod less steel A2 (Matelless steel A4 (Mat	Steel, zinc plated, hot- (e.g.: EN ISO 887:2006 Property class acc. to EN ISO 898-1:2013	dip galv 6, EN l	vanised or sherardized SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	Characteristic steel yield strength
nternal threaded anchor rod less steel A2 (Matelless steel A4 (Mat	(e.g.: EN ISO 887:2006) Property class acc. to EN ISO 898-1:2013	5.8	SO 7089:2000, EN ISO 7093:2 Characteristic steel ultimate tensile strength	Characteristic steel yield strength
anchor rod less steel A2 (Mate less steel A4 (Mate	Property class acc. to EN ISO 898-1:2013	5.8	Characteristic steel ultimate tensile strength	Characteristic steel yield strength
anchor rod less steel A2 (Mate less steel A4 (Mate	EN ISO 898-1:2013		-	
less steel A2 (Matelless steel A4 (Matelless s	EN ISO 898-1:2013			f _{vk} = 400 N/mm ²
l ess steel A4 (Mate		אא	f _{Uk} = 800 N/mm²	f _{VK} = 640 N/mm ²
	erial 1.4401 / 1.4404 / 1.	4571 /	1.4362 or 1.4578, acc. to EN 1 4565, acc. to EN 10088-1: 201 Characteristic steel ultimate	0088-1:2014) 14) Characteristic steel yield
	' '		tensile strength	strength
Threaded rod 1)	acc. to	50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²
	EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²
		80	f _{uk} = 800 N/mm ²	f _{yk} = 600 N/mm ²
Heyagon nut 1)	acc. to			
iexagon nut	EN ISO 3506-1:2009			
Washer	A4: Material 1.4401 / 1 HCR: Material 1.4529	.4307 .4404 or 1.45	/ 1.4311 / 1.4567 or 1.4541, ac / 1.4571 / 1.4362 or 1.4578, ac 65, acc. to EN 10088-1: 2014	c. to EN 10088-1:2014
nternal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength
anchor rod 1)	acc. to	50	f _{uk} = 500 N/mm²	f _{yk} = 210 N/mm²
	EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²
operty class 80 only fo	or stainless steel A4 and H	CR	<u> </u>	<u> </u>
c sleeve				
rated sleeve			Polypropylene (PP)	
dal injection syster	m VE-SF			Annex A 4
ra o	nternal threaded nchor rod 1) perty class 80 only for sleeve ated sleeve al injection system act description	EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:2000 Property class acc. to EN ISO 3506-1:2009 perty class 80 only for stainless steel A4 and He is sleeve ated sleeve al injection system VE-SF	EN ISO 3506-1:2009 70	Acc. to FN ISO 3506-1:2009 To for anchor rod class 70 Royamer Ro

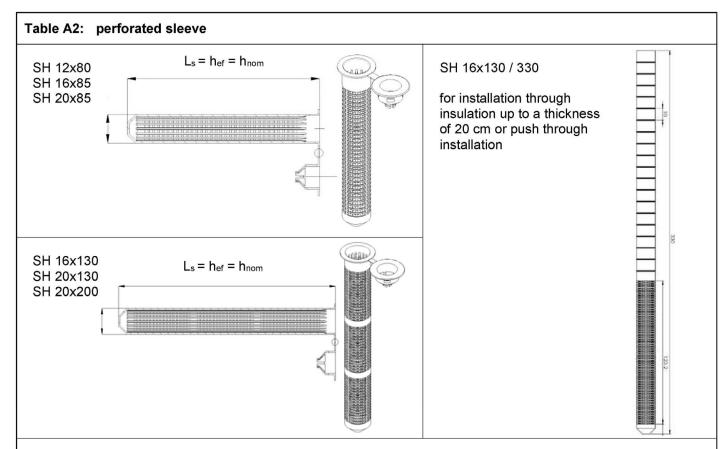


Table A3: sleeve dimensions

sleeve									
size	ds	Ls	$h_{ef} = h_{nom}$						
[mm]	[mm]	[mm]	[mm]						
SH 12x80	12	80	80						
SH 16x85	16	85	85						
SH 16x130	16	130	130						
SH 16x130 / 330 ¹⁾	16	330	130						
SH 20x85	20	85	85						
SH 20x130	20	130	130						
SH 20x200	20	200	200						

In annex C4 – C48 this sleeve is covered with the SH 16x130

Table A4: Steel parts

	Ar	ichor Rod	
Size	$d_1 = d_{nom}$	d_2	I _{ges}
[mm]	[mm]	[mm]	[mm]
IG-M6 ¹⁾	10	6	with sleeve: hef - 5mm
IG-M8 ¹⁾	12	8	without sleeve: hef
IG-M10 1)	16	10	without sleeve. Hel
M8	8	-	hef + t _{fix} + 9,5
M10	10	-	hef + t _{fix} + 11,5
M12	12	-	hef + t _{fix} + 17,5
M16	16	-	hef + t _{fix} + 20,0

¹⁾ Internal threaded rod with metric external thread

Soudal injection system VE-SF	
Product description Sleeves	Annex A 5

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Autoclaved Aerated Concrete (Use condition d) according to Annex B2
- Solid brick masonry (Use condition b), according to Annex B2.
- Hollow brick masonry (Use condition c), according to Annex B2 and B3
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow masonry or in autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests according to EOTA TR 053, Edition April 2016 under consideration of the β-factor according to Annex C1, Table C1.

Temperature Range:

- T_a: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- T_b: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- T_c: 40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use conditions in respect of installation and use:

- Condition d/d: Installation and use in dry masonry
- Condition w/w: Installation and use in dry or wet masonry (incl. w/d installation in wet masonry and use in dry masonry)

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transwithted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the EOTA TR 054, Edition April 2016, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
- N_{Rk,p} = N_{Rk,b} see Annex C4 to C48; N_{Rk,s} see Annex C2; N_{Rk,pb} see EOTA TR 054, Edition April 2016
- V_{Rk,b} see Annex C4 to C48; V_{Rk,s} see Annex C2; V_{Rk,c} see Annex C3; V_{Rk,pb} see EOTA TR 054, Edition April 2016
- For application with sleeve with drill bit size ≤ 15mm installd in joints not filled with mortar:
 - \circ N_{Rk,p,j} = 0,18 * N_{Rk,p} and N_{Rk,b,j} = 0,18 * N_{Rk,b} (N_{Rk,p} = N_{Rk,b} see Annex C4 to C48)
 - \circ $V_{Rk,c,j} = 0,15 * V_{Rk,c}$ and $V_{Rk,b,j} = 0,15 * V_{Rk,b}$ ($V_{Rk,b}$ see Annex C4 to C48; and $V_{Rk,c}$ see Annex C3)
- Application without sleeve installd in joints not filled with mortar is not allowed.

Installation:

- Dry or wet structures.
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

Soudal injection system VE-SF	
Intended use Specifications	Annex B 1

naming density [kg/dm³] dimensions LxBxH [mm]	picture	anchor rods	perforated sleeve	Annex	naming density [kg/dm³] dimensions LxBxH [mm]		oicture	anchor rods	perforated sleeve	Annex
Autoclaved aer	ated concrete acc	to EN	771-4		solid light weigl	nt cond	rete brick a	cc. to E	EN 771-3	
AAC ρ = 0,35-0,60 ≥ 499x240x249	7	M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C4 - C6	VBL ρ≥0,6 ≥240x300x113			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C47
Hollow light we	eight concrete bric	k acc.	to EN 77	1-3						
HBL 16DF ρ≥1,0 500x250x240		M8 - M16 IG-M6 - IG-M10	16x85 16x130 20x85 20x130 20x200	C43 - C44	Bloc creux B40 ρ≥0,8 495x195x190	E	FE	M8 - M16 IG-M6 - IG-M10	16x130 20x130	C45
Calcium silica	bricks acc. to EN 7	71-2						1	Γ	
KS ρ ≥ 2,0 ≥ 240x115x71		M8 – M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C7 - C8	KSL-3DF ρ≥1,4 240x175x113	0.		M8 - M16 IG-M6 - IG-M10	16x85 16x130 20x85 20x130	C9 - C10
KSL-8DF ρ≥1,4 248x240x238	688	M8-M16 IG-M6 - IG-M10	16x130 20x130 20x200	C11 - C12	KSL-12DF ρ≥1,4 498x175x238	13	333	M8 - M16 IG-M6 - IG-M10	16x130 20x130	C13 - C14
Solid clay brick	s acc. to EN 771-1									
Mz-1DF ρ ≥ 2,0 ≥ 240x115x55		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C15 - C16	Mz – 2 DF $\rho \ge 2,0$ ≥ 240x115x113			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C17 - C18
ntended Use Brick types and properties with corresponding fastening elements							,	Annex	B 2	

naming density [kg/dm³] dimensions LxBxH [mm]	picture	anchor rods	perforated sleeve	Annex	naming density [kg/dm³] dimensions LxBxH [mm]	ŗ	Dicture	anchor rods	perforated sleeve	Annex
Hollow clay br	icks acc. to EN 771									
HIz-10DF ρ ≥ 1,25 300x240x249		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C19 - C20	Porotherm Homebric ρ≥0,7 500x200x299			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C21 - C22
BGV Thermo ρ ≥ 0,6 500x200x314		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C23 - C24	Brique creuse $C40$ $\rho \ge 0.7$ $500x200x200$			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C29 - C30
Calibric R+ ρ ≥ 0,6 500x200x314		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C25 - C26	Blocchi Leggeri ρ≥0,6 250x120x250			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C31 - C32
Urbanbric ρ ≥ 0,7 560x200x274		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C27 - C28	Doppio Uni ρ≥0,9 250x120x120			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	C33 - C34
Hollow Clay br	ick withintegrated	insulat	ion acc.	to EN	771-1					
Coriso WS07 ρ ≥ 0,55 248x365x249 rock wool		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C35 - C36	T8P ρ ≥ 0,56 248x365x249 perlite	11		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C39 - C40
T7MW ρ ≥ 0,59 248x365x249 rock wool		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C37 - C38	MZ90-G ρ ≥ 0,68 248x365x249 rock wool			M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	C41 - C42
Soudal injection	Soudal injection system VE-SF							Annex	В 3	
	properties with corr	espond	ling faste	ning e	lements					

Installation: steel brush RBT

Table B2: Installation parameters in autoaerated concrete AAC and solid masonry (without sleeve)

Anchor size		M8	M10	IG-M6	M12	IG-M8	M16	IG-M10	
nominal drill hole diameter	d ₀	[mm]	10	1	2	1	4	1	18
drill hole depth	h₀	[mm]	80	80 90 100 100					00
effective anchorage depth	h _{ef}	[mm]	80 90 100 100				00		
minimum wall thickness	h _{min}	[mm]	h _{ef} + 30						
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	9 12 7		14 9		18	12
Brush			RBT10 RBT12 RBT14 RBT18				T18		
Diameter of steel brush	d _b ≥	[mm]	10,5 12,5			14,5		18,5	

Table B3: Installation parameters in solid and hollow masonry (with sleeve)

Anchor size			М8	M8 /	M10 / IC	9-M6		M16 / IG- G-M10	M8 /	
		sl	eeve SH	12x80	16x85	16×130	16x130/330	20x85	20×130	20×200
nominal drill h	ole diameter	d₀	[mm]	12	16	16	16	20	20	20
drill hole deptl	h	h ₀	[mm]	85	90	135	330	90 135 2		205
effective anch	orage depth	h _{ef}	[mm]	80	85	130	130	85	130	200
minimum wall	thickness	h _{min}	[mm]	115	115	195	195	115	195	240
Diameter of clearance			[mm]	9	7 (IG-M6) / 9 (IG-M8) / 12 9 (M8) / 12 (M10) 9 (IG-M8) / 12			,		
hole in the push through installation		d _f ≤	[mm]	14	18		22			
Brush				RBT12	RBT16		RBT20			
Diameter of steel brush		d _b	[mm]	12,5		16,5		20,5		

Hand pump (Volume 750 ml)

Soudal injection system VE-SF	
Intended Use Installation parameters and cleaning brush	Annex B 4
mountainer parameters and eleaning proper	

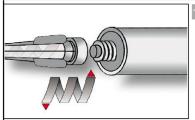
Table B4: Maximum working time and minimum curing time Soudafix VE400-SF

Temperature in the base material T			Minimum curing time in dry base material 1)		
0°C bis +4°C		45 min	7 h		
+ 5 °C bis + 9 °C		25 min	2 h		
+ 10 °C bis + 19 °C		15 min	80 min		
+ 20 °C bis + 29 °C	+5°C bis +40°C	6 min	45 min		
+ 30 °C bis + 34 °C		4 min	25 min		
+ 35 °C bis + 39 °C		2 min	20 min		
+ 40°C		1,5 min	15 min		

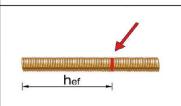
¹⁾ In wet base material the curing time <u>must</u> be doubled

Table B5: Maximum working time and minimum curing time Soudafix VE400-SF Arctic

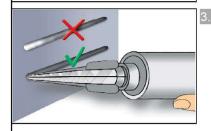
Temperature in the base material T	Temperature of cartridge	Gelling- / working time	Minimum curing time in dry base material ¹⁾
0 °C bis + 4 °C		10 min	2,5 h
+ 5 °C bis + 9 °C	-20°C bis +10°C	6 min	80 min
+ 10°C		6 min	60 min


¹⁾ In wet base material the curing time <u>must</u> be doubled

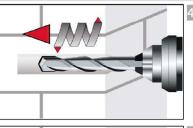
Soudal injection system VE-SF	
Intended Use Gelling and curing times	Annex B 5



Installation Instructions

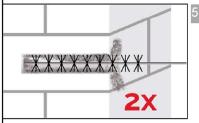

Preparation of cartridge

Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 and B5) as well as for new cartridges, a new static-mixer shall be used.

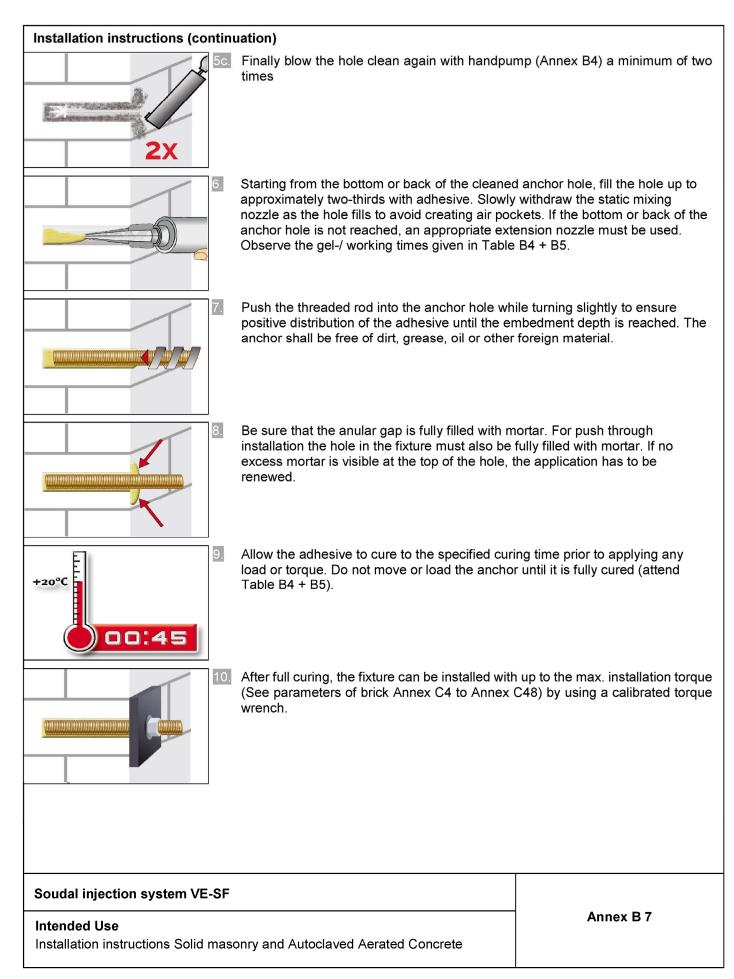


The position of the embedment depth shall be marked on the threaded rod.

Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

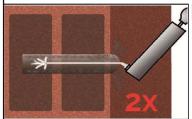

Installation in solid masonry (without sleeve)

Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 – C48, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.

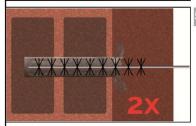

Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B4) a minimum of two times.

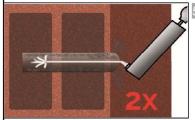
Attach an appropriate sized wire brush $> d_{b,min}$ (Table B2) to a drill or a cordless screwdriver and brush the hole clean with a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

Soudal injection system VE-SF	
Intended Use Installation instructions Solid masonry and Autoclaved Aerated Concrete	Annex B 6

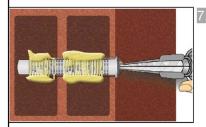


Installation instructions (continuation)


Installation in solid and hollow masonry (with sleeve)


Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 – C48, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.

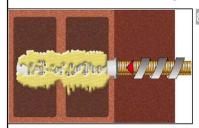
Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B4) a minimum of two times.


Attach an appropriate sized wire brush $> d_{b,min}$ (Table B3) to a drill or a cordless screwdriver and brush the hole clean with a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

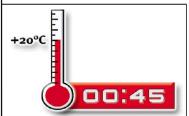
Finally blow the hole clean again with handpump (Annex B4) a minimum of two times

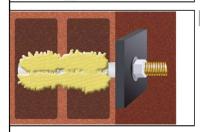
Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve. For installation through insulation the sleeve SH 16x130/330 shall be cutted at the top end according to the insulation thickness.

Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions. For push through installation the sleeve within the fixture must also be fully filled with mortar. Observe the gel-/ working times given in Table B4 + B5.


Soudal injection system VE-SF	
Intended Use Installation instructions hollow brick	Annex B 8

Page 18 of European Technical Assessment ETA-21/0170 of 13 February 2021


English translation prepared by DIBt


Installation instructions (continuation)

Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 + B5).

After full curing, the fixture can be installed with up to the max. installation torque (See parameters of brick Annex C4 to Annex C48) by using a calibrated torque wrench.

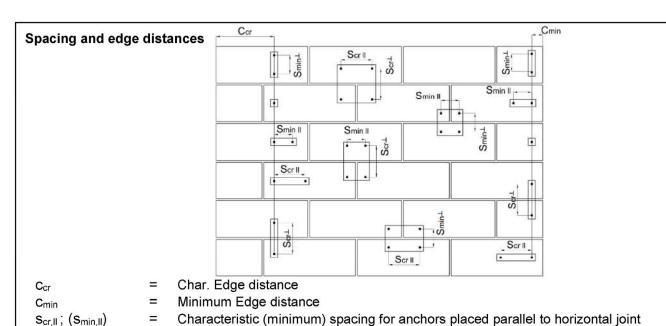
Soudal injection system VE-SF

Intended Use
Installation instructions hollow brick

Annex B 9

Table C1: β-factor for job-site testing under tension loading									
		β-Factor							
base material	anchor size	T _a : 40°	C / 24°C	T _b : 80°0	C / 50°C	T _c : 120°C / 72°C			
		d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w		
Autoclaved aerated concrete	all sizes	0,95	0,86	0,81	0,73	0,81	0,73		
0.1.1	d₀ ≤ 14 mm	0,93	0,80	0,87	0,74	0,65	0,56		
Calcium silica bricks	d₀≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65		
Clay Bricks	all sizes	0,86	0,86	0,86	0,86	0,73	0,73		
Concrete bricks	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
	d₀≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65		

Soudal injection system VE-SF	
Performances	Annex C 1
β-factors for job site testing under tension load	


Anchor size			IG-M6	IG-M8	IG-M10	М8	M10	M12	M16
Characteristic tension resistance									
stool proporty class 4.6	$N_{Rk,s}$	[kN]	_ 1)	_ 1)	_ 1)	15	23	34	63
steel, property class 4.6	γMs	[-]		_ 1)				,0	
steel, property class 4.8	$N_{Rk,s}$	[kN]	_ 1)	_ 1)	_ 1)	15	23	34	63
	γMs	[-]		_ 1)	4)			,5	
steel, property class 5.6	$N_{Rk,s}$	[kN]	_ 1)	_ 1)	_ 1)	18	29	42	79
	γMs	[-]	40	_ 1)	00	40		,0	70
steel, property class 5.8	$N_{Rk,s}$	[kN]	10	17	29	18	29	42	79
	γMs	[-]	40	1,5	40	20		,5 67	400
steel, property class 8.8	N _{Rk,s}	[kN]	16	27	46	29	46	67 ,5	126
Stainless steel A4 / HCR, property	γMs N Rk,s	[-] [kN]	14	1,5 26	41	26	41	,5 59	110
class 70		[-]	14	1,87	41	20		<u></u>	110
Stainless steel A4 / HCR, property	γMs N _{Rk,s}	[kN]	16	29	46	29	46	67	126
class 80	γMs	[-]	10	1,6	70		1	,6	120
Characteristic shear resistance	/ IVIS			1,0			<u> </u>	, •	
	V _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	7	12	17	31
steel, property class 4.6	γκ,s γMs	[-]		_ 1)		•		67	
	V _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	7	12	17	31
steel, property class 4.8	γMs	[-]		_ 1)		•		 25	
	V _{Rk,s}	[kN]	_ 1)	_ 1)	_ 1)	9	15	21	39
steel, property class 5.6	γΜs	[-]		_ 1)				67	
steel, property class 5.8	V _{Rk,s}	[kN]	5	9	15	9	15	21	39
	γMs	[-]		1,25	'		1,	25	
ataal maanantii alaaa 0.0	V _{Rk,s}	[kN]	8	14	23	15	23	34	63
steel, property class 8.8	γMs	[-]		1,25			1,	25	
Stainless steel A4 / HCR, property	$V_{Rk,s}$	[kN]	7	13	20	13	20	30	55
class 70	γMs	[-]		1,56			1,	56	
Stainless steel A4 / HCR, property	$V_{Rk,s}$	[kN]	8	15	23	15	23	34	63
class 80	γMs	[-]		1,33			1,	33	
Characteristic bending moment									
steel, property class 4.6	M ⁰ Rk,s	[Nm]	_ 1)	_ 1)	_ 1)	15	30	52	133
Steel, property diass 4.0	γMs	[-]		_ 1)				67	
steel, property class 4.8	M ⁰ Rk,s	[Nm]	_ 1)	_ 1)	_ 1)	15	30	52	133
	γMs	[-]		_ 1)	4)			25	
steel, property class 5.6	M ⁰ Rk,s	[Nm]	_ 1)	_ 1)	_ 1)	19	37	66	167
· · · · · · · · · · · · · · · · ·	γMs	[-]		_ 1)	0.7	40		67	407
steel, property class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	19	37	66	167
	γMs	[-]	40	1,25	00			25	000
steel, property class 8.8	M ⁰ Rk,s	[Nm]	12	30	60	30	60	105	266
	γMs	[-] [Nm]	11	1,25	50	26		25	222
Stainless steel A4 / HCR, property class 70	M ⁰ Rk,s	[Nm]	11	26 1.56	52	26	52	92	233
	γMs M/Op.	[-] [Nm]	12	1,56 30	60	30	60	56 105	266
Stainless steel A4 / HCR, property class 80	M ⁰ Rk,s γMs	[Nm] [-]	12	1,33	00	50		105 33	

¹⁾ Not part of the ETA

Soudal injection system VE-SF	
Performances Characteristic resistance under tension and shear load – steel failure	Annex C 2

 $S_{cr,\perp}$; $(S_{min,\perp})$

Load direction Anchor position	Tension load		arallel to free	Shear load perpendicular to free edge V ⊥		
Anchors parallel to horizontal joint s _{cr,II} ; (s _{min,II})		V	α _{g II,∨ II}	V-••	α _{g II,∨} ⊥	
Anchors vertical to horizontal joint s _{cr,} ±; (s _{min,} ±)		V	α _g ⊥,∨ II	V	$\alpha_{g} \perp_{V} \perp$	

Characteristic (minimum) spacing for anchors placed perpendicular to horizontal joint

$lpha_{ t edge,N}$	= Reduction factor for tension loads at the free edge (single anchor)	

 $\alpha_{\text{edge,V}} \perp$ = Reduction factor for shear loads perpendicular to the free edge (single anchor)

 $\alpha_{\text{edge,V II}}$ = Reduction factor for shear loads parallel to the free edge (single anchor) = Group factor for anchors parallel to horizontal joint under tension load

 $\alpha_{g\perp N}$ = Group factor for anchors perpendicular to horizontal joint under tension load

 $\alpha_{g \parallel, \forall \parallel}$ = Group factor for anchors parallel to horizontal joint under shear load parallel to the free edge

 $\alpha_{g \perp |V|}$ = Group factor for anchors perpendicular to horizontal joint under shear load parallel to the free edge = Group factor for anchors parallel to horizontal joint under shear load perpendicular to the free edge

 $\alpha_{a} \perp_{V} \perp$ = Group factor for anchors perpendicular to hor. joint under shear load perpendicular to the free edge

Single anchor at the edge: $N_{Rk,b} = \alpha_{edge,N} * N_{RK,b}$

 $V_{Rk,c II} = \alpha_{edge,V II} * V_{Rk,b}$ $V_{Rk,c \perp} = \alpha_{edge,V \perp} * V_{Rk,b}$

Group of 2 anchors: $N^{g}_{Rk} = \alpha_{g,N} * N_{RK,b}$

 $V^{g}_{Rk} = \alpha_{g,V} * V_{Rk,b}$ (for $c \ge c_{cr}$) $V^{g}_{Rk,c} = \alpha_{g,V} * V_{Rk,b}$ (for $c \ge c_{min}$)

Group of 4 anchors: $N^{g}_{Rk} = \alpha_{g \parallel l, N} * \alpha_{g} \perp_{l, N} * N_{RK, b}$

 $\begin{array}{lll} V^g_{Rk} &= \alpha_g \, _{II,V} ^* \, \alpha_g \, _{\downarrow,V} ^* \, V_{Rk,b} & \text{(for } c \geq c_{cr}) \\ V^g_{Rk,c} &= \alpha_g \, _{II,V} ^* \, \alpha_g \, _{\downarrow,V} ^* \, V_{Rk,b} & \text{(for } c \geq c_{min}) \end{array}$

Equations depend on anchor position and load direction (see table above). Reduction factor, group factor and resistances see annex C4 - C48. Reduction for installation in joints see annex B1.

Soudal injection system VE-SF	
Performances Definition of the reduction- and group factors	Annex C 3

Brick type: Autoclaved aerated concrete - AAC

Table C3: Stone description

Brick type		Autoclaved aerated concrete AAC
Density	ρ [kg/dm³]	0,35 – 0,6
Compressive strength	f _b [N/mm ²]	2, 4, 6
Code		EN 771-4
Producer (Country)		e.g. Porit (DE)
Brick dimensions	[mm]	≥ 499 x 240 x 249
Drilling method		Rotary drilling

Table C4: Installation parameter

Anchor size						M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 5 ≤ 5 ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤ 10						≤ 10	
Char. Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: c_{cr} = 210)							
Minimum Edge Distance	C _{min}	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	300							
Characteristic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	50							

Table C5: Reduction factors for single anchors at the edge

-	Tension load			Shear load							
'				ular to the fr	ee edge	Parallel to the free edge					
+1	with c ≥	αedge, N	11	with c ≥	αedge, ∨⊥	1	with c ≥	αedge, VII			
•	50 0,85	0.85	-	50	0,12		50	0,70			
			125	0,50	Ţ.	125	0,85				
	150	1,00		210	1,00		150	1,00			

Table C6: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
	50	50	1,10	•	50	50	0,75
	150	50	1,25		150	50	0,90
	150	300	2,00		150	250	2,00

Table C7: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint				
Shear load		with c ≥	with s ≥	αg II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,\vee\perp}$	
perpendicular to the free	•••	50	50	0,20		50	50	0,25	
		210	50	1,60		210	50	1,80	
edge		210	300	2,00		210	250	2,00	
Shear load		with c ≥	with s ≥	αg II,V II	+	with c ≥	with s ≥	$\alpha_{g\perp,VII}$	
Shear load parallel to the		50	50	1,15	\$	50	50	0,80	
free edge		150	50	1,60		150	50	1,10	
lice eage	-p	150	300	2,00		150	250	2,00	

Soudal injection system VE-SF

Performances Autoclaved aerated concrete - AAC

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 4

M8 - M10 / IG-M6 - M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10/ 16x85 IG-M6 16x13 M12 / M16 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{RK,c} according to Anchor size		h _{ef} mm] ssive st ≥ 80 ≥ 90 100 80 85 130 85 130 200		d/d	120°C/72°C	Use condit	ion w/d w/w 80°C/50°C NRk,b = NRk 0,35 kg/d 0,9 0,9 1,5 1,5 0,9 0,9 0,9	120°C/72°C	d/d w/d w/w All Temperatur ranges V _{Rk,b} 1) 1,5 2,5 2,5 2,5 2,5 1,5
M8 - M10 / IG-M6 - M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10 / 16x85 IG-M6 16x13 M12 / M16 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to	[rompres	h _{ef} mm] ssive st ≥ 80 ≥ 90 100 100 80 85 130 85 130 200	1,2 1,2 2,0 2,0 1,2 1,2 1,2 2,0 2,0	80°C/50°C N _{Rk,b} = N _{Rk} = 2 N/mm ² 0,9 0,9 1,5 1,5 0,9 0,9 0,9 1,5 1,5	7, D 0,9 0,9 1,5 1,5 0,9 0,9 0,9	[kN] Density p ≥ 0,9 0,9 1,5 1,5 0,9 0,9 0,9	w/w 80°C/50°C NRK,b = NRK 0,35 kg/d 0,9 0,9 1,5 1,5 0,9 0,9 0,9	m³ 0,9 0,9 1,5 1,5 0,9 0,9	w/d w/w All Temperatur ranges V _{Rk,b} 1) 1,5 2,5 2,5 2,5 2,5
M8 - M10 / IG-M6 - M12 / IG-M8 - M8 12x80 M8 / M10 / IG-M6 16x13 M12 / M16 / 20x85 IG-M6 20x20 T) V _{Rk,c} according to	[rompres	h _{ef} mm] ssive st ≥ 80 ≥ 90 100 100 80 85 130 85 130 200	1,2 1,2 2,0 2,0 1,2 1,2 1,2 2,0 2,0	N _{Rk,b} = N _{Rk} = 2 N/mm ² 0,9 0,9 1,5 1,5 0,9 0,9 1,5 1,5 1,5	7, D 0,9 0,9 1,5 1,5 0,9 0,9 0,9	[kN] Density p ≥ 0,9 0,9 1,5 1,5 0,9 0,9 0,9	N _{Rk,b} = N _{Rk} 0,35 kg/d 0,9 0,9 1,5 1,5 0,9 0,9 0,9	m³ 0,9 0,9 1,5 1,5 0,9 0,9	Temperature ranges V _{Rk,b} 1) 1,5 2,5 2,5 2,5 1,5
M8 - M10 / IG-M6 - M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10/ 16x85 IG-M6 16x13 M12 / M16 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to Anchor size Perfo sleet	[rompres 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mm] ssive st ≥ 80 ≥ 90 100 100 80 85 130 85 130 200	1,2 1,2 2,0 2,0 1,2 1,2 1,2 2,0 2,0	= 2 N/mm ² 0,9 0,9 1,5 1,5 0,9 0,9 0,9 1,5 1,5	0,9 0,9 1,5 1,5 0,9 0,9 0,9	[kN] 0ensity p ≥ 0,9 0,9 1,5 1,5 0,9 0,9	0,35 kg/d 0,9 0,9 1,5 1,5 0,9 0,9	0,9 0,9 1,5 1,5 0,9 0,9	1,5 2,5 2,5 2,5 2,5 1,5
M8 - M10 / IG-M6 - M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10 / IG-M6 16x13 M12 / M16 / IG-M8 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to	ompres 2 2 2 2 1 2 1 2 1 1 1 1 1	ssive st ≥ 80 ≥ 90 100 80 85 130 85 130 200	1,2 1,2 2,0 2,0 1,2 1,2 1,2 2,0 2,0	0,9 0,9 1,5 1,5 0,9 0,9 0,9 1,5	0,9 0,9 1,5 1,5 0,9 0,9 0,9	Pensity ρ ≥ 0,9 0,9 1,5 1,5 0,9 0,9 0,9	0,9 0,9 1,5 1,5 0,9 0,9	0,9 0,9 1,5 1,5 0,9 0,9	2,5 2,5 2,5 1,5
M8 - M10 / IG-M6 - M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10/ IG-M6 16x13 M12 / M16 / IG-M8 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to	≥ ≥ ≥ ≥ ≥	≥ 80 ≥ 90 100 100 80 85 130 85 130 200	1,2 1,2 2,0 2,0 1,2 1,2 1,2 2,0 2,0	0,9 0,9 1,5 1,5 0,9 0,9 0,9 1,5	0,9 0,9 1,5 1,5 0,9 0,9 0,9	0,9 0,9 1,5 1,5 0,9 0,9	0,9 0,9 1,5 1,5 0,9 0,9	0,9 0,9 1,5 1,5 0,9 0,9	2,5 2,5 2,5 1,5
M10 / IG-M6 - M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10 / 16x85 IG-M6 16x13 M12 / M16 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to	≥ ≥ ≥	90 100 80 85 130 85 130 200	1,2 2,0 2,0 1,2 1,2 1,2 2,0 2,0	0,9 1,5 1,5 0,9 0,9 0,9 1,5 1,5	0,9 1,5 1,5 0,9 0,9 0,9 1,5	0,9 1,5 1,5 0,9 0,9	0,9 1,5 1,5 0,9 0,9	0,9 1,5 1,5 0,9 0,9	2,5 2,5 2,5 1,5
M12 / IG-M8 - M16 / IG-M10 - M8 12x80 M8 / M10 / 16x85 IG-M6 16x13 M12 / M16 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to)	100 80 85 130 85 130 200	2,0 2,0 1,2 1,2 1,2 2,0 2,0	1,5 1,5 0,9 0,9 0,9 1,5 1,5	1,5 1,5 0,9 0,9 0,9 1,5	1,5 1,5 0,9 0,9	1,5 1,5 0,9 0,9 0,9	1,5 1,5 0,9 0,9	2,5 2,5 1,5
M16 / IG-M10 - M8) 2	80 85 130 85 130 200	2,0 1,2 1,2 1,2 2,0 2,0	1,5 0,9 0,9 0,9 1,5 1,5	1,5 0,9 0,9 0,9 1,5	1,5 0,9 0,9 0,9	1,5 0,9 0,9 0,9	1,5 0,9 0,9	2,5 1,5
M8		80 85 130 85 130 200	1,2 1,2 1,2 2,0 2,0	0,9 0,9 0,9 1,5	0,9 0,9 0,9 1,5	0,9 0,9 0,9	0,9 0,9 0,9	0,9 0,9	1,5
M8 / M10/ IG-M6 16x85 M12 / M16 / IG-M8 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to) 2	85 130 85 130 200	1,2 1,2 2,0 2,0	0,9 0,9 1,5 1,5	0,9 0,9 1,5	0,9	0,9 0,9	0,9	
IG-M6) 2	130 85 130 200	1,2 2,0 2,0	0,9 1,5 1,5	0,9 1,5	0,9	0,9		1 7 5
M12 / M16 / 20x85 IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to) 2	85 130 200	2,0 2,0	1,5 1,5	1,5			09	
IG-M8 / 20x13 IG-M10 20x20 1) V _{Rk,c} according to Anchor size Perfo) 2	130 200	2,0	1,5		1,5	4 -		2,5
IG-M10 20x20 1) V _{Rk,c} according to Anchor size Perfo) 2	200			C,I	1.5	1,5	1,5	2,5
1) V _{Rk,c} according to Anchor size Perfo			2,0	1,5	1,5	1,5 1,5	1,5 1,5	1,5 1,5	2,5 2,5
Anchor size Perfo					1,5	1,5	1,5	1,5	2,5
Anchor size slee									
Anchor size slee	1			Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}	
Anchor size slee						Use condit	ion		
Anchor size slee	ve age	ge					w/d		d/d
Anchor size slee		ffecitve Ichoraç depth	d/d				w/w		w/d
C	Secitive Anchorage depth	nch de							W/W All
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature ranges
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(,р		V _{Rk,b} 1)		
		[mm]		0	_	[kN]			
MAQ				= 4 N/mm ²	i	ensity ρ≥			
		≥ 80	3,0	2,5	2,0	2,5	2,0	2,0	4,5
M10 / IG-M6 -		≥ 90	3,0	2,5	2,0	2,5	2,0	2,0	7,5
M12 / IG-M8 -		≥ 100	5,0	4,5	4,0	4,5	4,0	4,0	7,5
M16 / IG-M10		≥ 100	5,0	4,5	4,0	4,5	4,0	4,0	7,5
M8 12x M8 / M10/ 16x		80 85	3,0 3,0	2,5 2,5	2,0 2,0	2,5 2,5	2,0 2,0	2,0 2,0	4,5 7,5
IG-M6 16x		130	3,0	2,5	2,0	2,5	2,0	2,0	7,5
M12 / M16 / IG- 20x		85	5,0	4,5	4,0	4,5	4,0	4,0	7,5
M8 / 20x		130	5,0	4,5	4,0	4,5	4,0	4,0	7,5
IG-M10 20x		200	5,0	4,5	4,0	4,5	4,0	4,0	7,5
1) V _{Rk,c} according to				-, -, -	., -,-		7.7.7	., -,-	, , _
Soudal injection sys									

Brick type: A	utoclaved	aerated co	oncrete -	AAC							
ļ , , , , , , , , , , , , , , , , , , ,					cteristic Re	eietancee v	with c > c	and e > e			
		Effecitve Anchorage depth	Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr} Use condition								
								d/d			
	Perforated			d/d				w/d			
Anchor size		cho dep					w/w				
7 (Herior Size	sleeve	A E							_ All		
			40°C/24°C 8	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature		
		h _{ef}		$N_{Rk,b} = N_{Rk}$			$N_{Rk,b} = N_{Rk}$		ranges V _{Rk,b} 1)		
		[mm]		INRK,D - INRE	<u>x,p</u>	[kN]	INRK,D - INRK	(,р	V RK,D		
	Com	pressive st	:renath f _h :	= 6 N/mm ²	: D	ensity ρ≥	0.65 ka/d	lm³			
M8	-	≥ 80	4,0	3,5	3,0	3,5	3,0	3,0	6,0		
M10 / IG-M6	-	≥ 90	4,0	3,5	3,0	3,5	3,0	3,0	10,0		
M12 / IG-M8	-	≥ 100	7,0	6,0	5,5	6,5	5,5	5,5	10,0		
M16 / IG-M10	-	≥ 100	7,0	6,0	5,5	6,5	5,5	5,5	10,0		
M8	12x80	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0		
M8 / M10/	16x85	85	4,0	3,5	3,0	3,5	3,0	3,0	10,0		
IG-M6	16x130	130	4,0	3,5	3,0	3,5	3,0	3,0	10,0		
M12 / M16 /	20x85	85	7,0	6,0	5,5	6,5	5,5	5,5	10,0		
IG-M8 /	20x130	130	7,0	6,0	5,5	6,5	5,5	5,5	10,0		
IG-M10	20x200	200	7,0	6,0	5,5	6,5	5,5	5,5	10,0		

¹⁾ V_{Rk,c} according to Annex C3

Table C9: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Alichor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,1	0,1*N _{Rk} / 2,8	2*δνο	0,3	0,3*V _{Rk} / 2,8	1,5*δ∨ο
M16	all	0,1			0,1	0,1*V _{Rk} / 2,8	1,5*δ∨0

Soudal injection system VE-SF

Performances Autoclaved aerated concrete – AAC
Characteristic Resistances and Displacements

Annex C 6

Brick type: Solid calcium silica brick KS-NF

Table C10: Stone description

Brick type		Solid calcium silica brick KS-NF
Density	ρ [kg/dm³]	≥ 2,0
Compressive strength	f _b [N/mm ²]	≥ 28
Conversion factor for lov compressive strengths	wer	$(f_b / 28)^{0.5} \le 1.0$
Code		EN 771-2
Producer (Country)		e.g. Wemding (DE)
Brick dimensions	[mm]	≥ 240 x 115 x 71
Drilling method		Hammer drilling

Table C11: Installation parameter

Anchor size					M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 15	≤ 15	≤ 10	≤ 10	≤ 10		
Char. Edge distance	Ccr	[mm]	150	150 (for shear loads perpendicular to the free edge: c_{cr} = 240)							
Minimum Edge Distance	C _{min}	[mm]	60								
Characteristic Spacing	Scr, II	[mm]	240								
Characteristic Spacing	Scr, ⊥	[mm]	150								
Minimum Spacing	Smin	[mm]	75								

Table C12: Reduction factors for single anchors at the edge

_	Tension load			Shear load						
'	Chision load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
+	with c ≥	Cledge, N	1	with c ≥	αedge, ∨⊥	-(with c ≥	αedge, VII		
•	60	0,50		60	0,30	‡	60	0,60		
	100	0,50		100	0,50		100	1,00		
	150	1,00		240	1,00		150	1,00		

Table C13: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
-	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
	60 75		0,70		60	75	1,15	
	150	75	1,40		150	75	2,00	
	150	240	2,00	1 of the same and the same and	150	150	2,00	

Table C14: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load	4-1	with c ≥	with s ≥	αg II,V ⊥	1	with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
perpendicular	•••	60	75	0,75		60	75	0,90	
to the free		150	75	2,00		150	75	2,00	
edge	150 240 2,00		150	150	2,00				
Shear load		with c ≥	with s ≥	αg II,V II	1	with c ≥	with s ≥	αg ⊥,V II	
parallel to the		60	75	2,00		60	75	2,00	
free edge		150	75	2,00		150	75	2,00	
lice eage		150	240	2,00		150	150	2,00	

Soudal injection system VE-SF

Performances Solid calcium silica brick KS-NF

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 7

Brick type: Solid calcium silica brick KS-NF

Table C15: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}				
				Use condition								
Anchor size	Perforated sleeve	A H		d/d				d/d w/d w/w				
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(,p		$N_{Rk,b} = N_{Rk}$	(,p	V _{Rk,b} 2)			
		[mm]			·	[kN]						
		(Compress	ive streng	th f _b ≥ 28 N	/mm ^{2 1)}						
M8	-	≥ 80	7,0	6,5	5,0	6,0	5,5	4,0				
M10 / IG-M6	-	≥ 90	7,0	6,5	5,0	6,0	5,5	4,0				
M12 / IG-M8	-	≥ 100	7,0	6,5	5,0	6,0	5,5	4,0				
M16 / IG-M10	-	≥ 100	7,0	6,5	5,0	7,0	6,5	5,0				
M8	12x80	80	7,0	6,5	5,0	6,0	5,5	4,0	7,0			
M8 / M10/	16x85	85	7,0	6,5	5,0	7,0	6,5	5,0] 7,0			
IG-M6	16x130	130	7,0	6,5	5,0	7,0	6,5	5,0				
M12 / M16 /	20x85	85	7,0	6,5	5,0	7,0	6,5	5,0				
IG-M8 /	20x130	130	7,0	6,5	5,0	7,0	6,5	5,0				
IG-M10	20x200	200	7,0	6,5	5,0	7,0	6,5	5,0				

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C10. For stones with higher strengths, the shown values are valid without conversion.

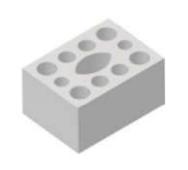
Table C16: Displacements

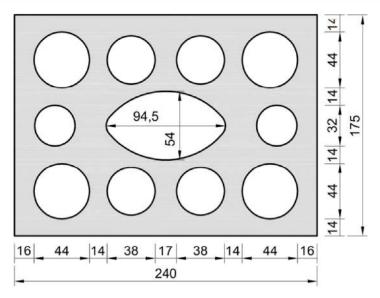
Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN] [mm]		[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0.4*NL / 2.5	0*2	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,1	0,1*N _{Rk} / 3,5	2 *δΝο	0,1	0,1*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF

Performances Solid calcium silica brick KS-NF
Characteristic Resistances and Displacements

Annex C 8


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Calcium silica brick KSL-3DF

Table C17: Stone description

Brick type		Hollow calcium silica brick KSL-3DF
Density	ρ [kg/dm 3]	≥ 1,4
Compressive strength	f _b [N/mm ²]	≥ 14
Conversion factor for low compressive strengths	ver	$(f_b / 14)^{0.75} \le 1.0$
Code		EN 771-2
Producer (Country)		e.g. KS-Wemding (DE)
Brick dimensions	[mm]	≥ 240 x 175 x 113
Drilling method		Rotary drilling

Table C18: Installation parameter

Anchor size						M16	IG-M6	IG-M8	IG-M10
Installation torque	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8	
Char. Edge distance	Ccr	[mm]	m] 120 (for shear loads perpendicular to the free edge: $c_{cr} = 240$)						
Minimum Edge Distance	C _{min}	[mm]				60			
Characteristic Spacing	Scr, II	[mm]				240			
Characteristic Spacing	Scr, ⊥	[mm]	m] 120						
Minimum Spacing	Smin	[mm]				120			

Table C19: Reduction factors for single anchors at the edge

Tension load				Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, V II			
•	60	1,00	→	60	0,30] • •	60	1,00			
120 1,00			240	1,00		120	1,00				

Soudal injection system VE-SF	
Performances Hollow Calcium silica brick KSL-3DF Description of the stone, Installation parameters, Reductionfactors	Annex C 9

Brick type: Hollow Calcium silica brick KSL-3DF

Table C20: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
+	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
	60	120	1,50		60	120	1,00	
	120	120	2,00		80	120	1,00	
	120	240	2,00		120	120	2,00	

Table C21: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load		with c ≥	with s ≥	αg II,V ⊥	1	with c ≥	with s ≥	$\alpha_{g\perp,\vee\perp}$	
perpendicular	•••	60	120	0,30		60	120	0,30	
to the free		120	120	1,00			120	0,50	
edge	***************************************	120	240	2,00		240	120	2,00	
Shear load	1	with c ≥	with s ≥	αg II,V II	ļ <u>-</u>	with c ≥	with s ≥	αg ⊥,V II	
parallel to the	••	60	120	1,00	•	60	120	1.00	
free edge		120 12	120	1,60	•	00	120	1,00	
lice eage	- į	120	240	2,00	- processor de consent	120	120	2,00	

Table C22: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}	
						Use condi	tion		
		l ge					w/d		d/d
I Anchor size		Effecitve Anchorage depth		d/d			w/u w/w		w/d
	Perforated	월 <u>년</u> 용							w/w
	sleeve	,							All
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature
									ranges
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$			$N_{Rk,b} = N_{Rk}$	ː,p	V _{Rk,b} 2)
		[mm]				[kN]			
			Compress	ive streng	th f _b ≥ 14 N	/mm ^{2 1)}			
M8 / M10/	16x85	85	2,5	2,5	1,5	2,5	2,5	1,5	6,0
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	6,0
M12 / M16 /	20x85	85	6,5	6,0	4,5	6,5	6,0	4,5	6,0
IG-M8 / IG-M10	20x130	130	6,5	6,0	4,5	6,5	6,0	4,5	6,0

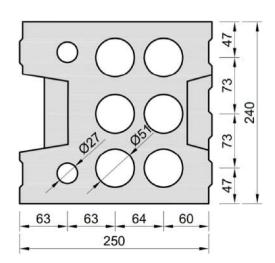
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C17. For stones with higher strengths, the shown values are valid without conversion.

Table C23: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.42*N / 2.5	2*5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨ο

Soudal injection system VE-SF	
Performances Hollow Calcium silica brick KSL-3DF Group factors, characteristic Resistances and Displacements	Annex C 10

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Calcium silica brick KSL-8DF

Table C24: Stone description

Brick type		Hollow Calcium silica brick KSL-8DF
Density	ρ [kg/dm 3]	≥ 1,4
Compressive strength	f _b [N/mm ²]	≥ 12
Conversion factor for low compressive strengths	wer	$(f_b / 12)^{0.75} \le 1.0$
Code		EN 771-2
Producer (Country)		e.g. KS-Wemding (DE)
Brick dimensions	[mm]	≥ 248 x 240 x 238
Drilling method		Rotary drilling

Table C25: Installation parameter

Anchor size [-]			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 240)						
Minimum Edge Distance	C _{min}	[mm]				50			
Characteristic Spacing	Scr, II	[mm]	250						
Characteristic Spacing	Scr, ⊥	[mm]	120						
Minimum Spacing	Smin	[mm]	50						

Table C26: Reduction factors for single anchors at the edge

Tension load				Shear load							
Terision load			Perpendic	ular to the fr	ee edge	Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, ∨ II			
•	50	1,00		50	0,30] •	50	1,00			
	120	1,00		250	1,00		120	1,00			

Soudal injection system VE-SF	
Performances Hollow Calcium silica brick KSL-8DF Description of the stone, Installation parameters, Reductionfactors	Annex C 11
Boostiplier of the steries, metallication parameters, reconstitutions	

Brick type: Hollow Calcium silica brick KSL-8DF

Table C27: Factors for anchor groups under tension load

And	chor position p	arallel to hor. jo	oint	Ancho	r position perp	endicular to ho	r. joint
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,00		50	50	1,00
	120	250	2,00		120	120	2,00

Table C28: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	αg II,∨⊥	1	with c ≥	with s ≥	$\alpha_{\text{g}}\bot, \vee\bot$
perpendicular	•••	50	50	0,45		50	50	0,45
to the free		250	50	1,15		250	50	1,20
edge		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the	•	50	50	1,30		50	50	1,00
free edge		120	250	2,00		120	250	2,00

Table C29: Characteristic values of tension and shear load resistances

			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
				Use condition							
		e ge_					/d		d/d		
		Effecitve Anchorage depth		d/d			w/d w/w		w/d		
Anchor size	Perforated	မျှင်း Ge		1			VV / VV		w/w		
Anchor size	sleeve	μ₩							All		
			40°C/24°C	/24°C 80°C/50°C	120°C/72°C	40°C/24°C 80°C/50°		120°C/72°C	Temperature		
									ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с ,р		$N_{Rk,b} = N_{Rk}$	c,p	V _{Rk,b} ²⁾		
		[mm]		[kN]							
		(Compress	ive streng	th f _b ≥ 12 N	/mm ^{2 1)}					
M8 / M10/ IG-M6	16x130	130	5,0	4,5	3,5	5,0	4,5	3,5	3,5		
M12 / M16 /	20x130	130	F 0	4.5	2 5	5.0	4 E	2 5	6.0		
IG-M8 / IG-M10	20x200	200	5,0	5,0 4,5	3,5	5,0	4,5	3,5	6,0		

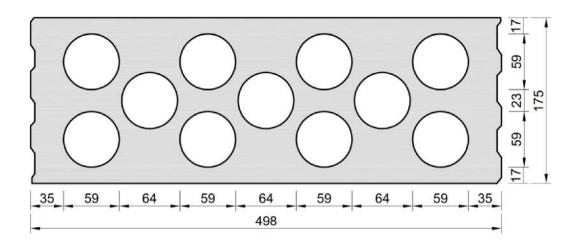
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C24. For stones with higher strengths, the shown values are valid without conversion.

Table C30: Displacements

Anchor sizo	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	0* 5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13		2*δΝο	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Calcium silica brick KSL-8DF	Annex C 12
Group factors, characteristic Resistances and Displacements	

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Calcium silica brick KSL-12DF

Table C31: Stone description

Brick type		Hollow Calcium silica brick KSL-12DF
Density	ρ [kg/dm³]	≥ 1,4
Compressive strength	f_b [N/mm ²]	≥ 12
Conversion factor for low strengths	$(f_b / 12)^{0.75} \le 1.0$	
Code		EN 771-2
Producer (Country)		e.g. KS-Wemding (DE)
Brick dimensions	[mm]	≥ 498 x 175 x 238
Drilling method		Rotary drilling

Table C32: Installation parameter

Anchor size					M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]							≤ 5
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	C _{min}	[mm]	50						
Characteristic Spacing	Scr, II	[mm]	500						
Characteristic Spacing	Scr, ⊥	[mm]	120						
Minimum Spacing	Smin	[mm]	50						

Table C33: Reduction factors for single anchors at the edge

Tension load			Shear load						
			Perpendic	ular to the fr	ee edge	Paralle	el to the free	edge	
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, VII	
•	50	1,00	→	50	0,45] • • [50	1,00	
	120	1,00		500	1,00		120	1,00	

Soudal injection system VE-SF	
Performances Hollow Calcium silica brick KSL-12DF Description of the stone, Installation parameters, Reductionfactors	Annex C 13

Brick type: Hollow Calcium silica brick KSL-12DF

Table C34: Factors for anchor groups under tension load

Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,50		50	50	1,00
	120	500	2,00		120	240	2,00

Table C35: Factors for anchor groups under shear load

	Anchor posit	ion parallel	to hor. joint		Anchor position	on perpendic	ular to hor. jo	oint
Shear load		with c ≥	with s ≥	αg II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,\vee\perp}$
perpendicular	•••	50	50	0,55		50	50	0,50
to the free		500	50	1,00		500	50	1,00
edge		500	500	2,00		500	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the	•	50	50	2,00		50	50	1,30
free edge		120	500	2,00		120	250	2,00

Table C36: Characteristic values of tension and shear load resistances

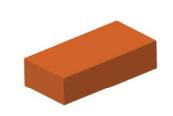
			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}									
				Use condition								
		ge ge					ام/،،،		d/d			
		Effecitve Anchorage depth		d/d			w/d w/w		w/d			
I Anchor size	Perforated	මූ දු ම මේ වූ ම					VV / VV	W/W				
	sleeve	⊞ \{							All			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature			
									ranges			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ $N_{Rk,b} = N_{Rk,p}$					V _{Rk,b} ²⁾				
		[mm]				[kN]						
		(Compress	ive streng	th f _b ≥ 12 N	/mm ^{2 1)}						
M8 / M10/ IG-M6	16x130	130	3,5	3,5	2,5	3,5	3,5	2,5	3,5			
M12 / M16 / IG-M8 / IG-M10	20x130	130	3,5	3,5	2,5	3,5	3,5	2,5	7,0			

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C31. For stones with higher strengths, the shown values are valid without conversion.

Table C37: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Andrior size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	all	0,13			0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Calcium silica brick KSL-12DF Group factors, characteristic Resistances and Displacements	Annex C 14


²⁾ V_{Rk,c} according to Annex C3

Brick type: Solid clay brick 1)F
--------------------------------	----

Table C38: Stone description

Brick type		Solid clay brick Mz-1DF
Density	ρ [kg/dm³]	≥ 2,0
Compressive strength	f _b [N/mm ²]	≥ 20
Conversion factor for low strengths	er compressive	$(f_b / 20)^{0.5} \le 1.0$
Code		EN 771-1
Producer (Country)		e.g. Wienerberger (DE)
Brick dimensions	[mm]	≥ 240 x 115 x 55
Drilling method		Hammer drilling

Table C39: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Char. Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: c_{cr} = 240)						
Minimum Edge Distance	C _{min}	[mm]	60						
Characteristic Spacing	Scr, II	[mm]		240					
Characteristic Spacing	Scr, ⊥	[mm]	130						
Minimum Spacing	Smin	[mm]	65						

Table C40: Reduction factors for single anchors at the edge

Tension load		Shear load						
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge		
+	with c ≥	Cledge, N	1	with c ≥	αedge, ∨⊥	-(with c ≥	αedge, VII
	• 60 0.7	0,75		60	0,10		60	0,30
	00	0,73		100	0,50	Į Į	100	0,65
	150	1,00	utorosomothorosom	240	1,00	- in the second	150	1,00

Table C41: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
	60	65	0,85		60	65	1,00
	150	65	1,15		150	65	1,20
	150	240	2,00		150	130	2,00

Table C42: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	αg II,V⊥	1	with c ≥	with s ≥	$\alpha_{\text{g}}\bot, \vee\bot$
perpendicular		60	65	0,40		60	65	0,30
to the free		240	65	2,00		240	65	2,00
edge		240	240	2,00		240	130	2,00
Shear load parallel to the free edge		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,∨ II
	60	65	1,75	•	60	65	1,10	
	150	65	2,00	•	150	65	2,00	
lice eage		150	240	2,00		150	130	2,00

Soudal injection system VE-SF

Performances Solid clay brick 1DF

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 15

Brick type: Solid clay brick 1DF

Table C43: Characteristic values of tension and shear load resistances

				Chara	cteristic Res	sistances w	/ith c ≥ c _{cr} a	and s ≥ s _{cr}				
				Use condition								
Anchor size	Perforated sleeve	m e		d/d			w/d w/w		d/d w/d w/w			
7 (1010) 3120			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk,b}$	р		$N_{Rk,b} = N_{Rk}$,p	V _{Rk,b} 2)			
		[mm]				[kN]						
Compressive strength f _b ≥ 20 N/mm ^{2 1)}												
M8	•	≥ 80	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M10 / IG-M6	ı	≥ 90	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M12 / IG-M8	-	≥ 100	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,0	6,5	6,5	12,0			
M8	12x80	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M8 / M10/	16x85	85	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
IG-M6	16x130	130	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
	20x85	85	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M12 / IG-M8	20x130	130	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
	20x200	200	7,0	6,0	6,0	7,0	6,0	6,0	8,0			
M16 /	20x85	85	8,0	6,5	6,5	8,0	6,5	6,5	12,0			
IG-M10	20x130	130	8,0	6,5	6,5	8,0	6,5	6,5	12,0			
	20x200	200	8,0	6,5	6,5	8,0	6,5	6,5	12,0			

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C38. For stones with higher strengths, the shown values are valid without conversion.

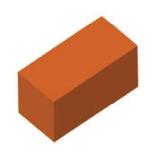
Table C44: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0.1*N / 2.5	0*5	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,1	0,1*N _{Rk} / 3,5	2 *δΝο	0,1	0,1*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF

Performances Solid clay brick 1DF
Characteristic Resistances and Displacements

Annex C 16


²⁾ V_{Rk,c} according to Annex C3

Brick type: Solid clay brick 2DF

Table C45: Stone description

Brick type		Solid clay brick Mz- 2DF
Density	ρ [kg/dm³]	≥ 2,0
Compressive strength	f _b [N/mm ²]	≥ 28
Conversion factor for lowe strengths	er compressive	$(f_b / 28)^{0.5} \le 1.0$
Code		EN 771-1
Producer (Country)		e.g. Wienerberger (DE)
Brick dimensions	[mm]	≥ 240 x 115 x 113
Drilling method		Hammer drilling

Table C46: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	·			≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤					≤ 10
Char. Edge distance	Ccr	[mm]	m] 150 (for shear loads perpendicular to the free edge: c _{cr} = 240)						
Minimum Edge Distance	C _{min}	[mm]	50						
Characteristic Spacing	Scr, II	[mm]				240			
Characteristic Spacing	Scr, ⊥	[mm]	240						
Minimum Spacing	Smin	[mm]				50			

Table C47: Reduction factors for single anchors at the edge

Tension load			Shear load						
			Perpendic	Perpendicular to the free edge Parallel to the free edge					
+	with c ≥	αedge, N		with c ≥	αedge, ∨⊥	-{	with c ≥	αedge, VII	
	50	50 1,00		50	0,20		50	1,00	
	30	1,00		125	0,50	Ţ	30	1,00	
-	150	1,00		240	1,00		150	1,00	

Table C48: Factors for anchor groups under tension load

An	Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N		
• •	50	50	1,50		50	50	0,80		
	150	240	2,00		150	240	2,00		

Table C49: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular to the free edge		with c ≥	with s ≥	αg II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,V\perp}$
		50	50	0,40		50	50	0,20
		240	50	1,20		240	50	0,60
		240 240	2,00		240	125	1,00	
		240	240	2,00		240	240	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the free edge	• •	50	50	1,20	•	50	50	1,00
	*	150 240	2.00	•	50	125	1,00	
l lice eage		150 240		2,00		150	240	2,00

Soudal injection system VE-SF

Performances Solid clay brick 2DF

Description of the stone, Installation parameters, Reduction- and Group factors

Annex C 17

Brick type: Solid clay brick 2DF

Table C50:	Characteristic values of	tension and shear	load resistances

Table 030.	Onaracteri	istic values	or terisio	ii alia siic	ai ioau iesi	Starices						
				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}				
			Use condition									
Anchor size	Perforated sleeve			d/d			w/d w/w					
Alichor size			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с,р		$N_{Rk,b} = N_{Rk}$	x,p	V _{Rk,b} ²⁾			
		[mm]				[kN]						
Compressive strength f _b ≥ 28 N/mm ^{2 1)}												
M8	-	≥ 80	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M10 / IG-M6	-	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M12 / IG-M8	=	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12			
M16 / IG-M10	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾			
M8	12x80	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M8 / M10/	16x85	85	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
IG-M6	16x130	130	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
	20x85	85	9,0	9,0	7,5	9,0	9,0	7,5	12			
M12 / IG-M8	20x130	130	9,0	9,0	7,5	9,0	9,0	7,5	12			
	20x200	200	9,0	9,0	7,5	9,0	9,0	7,5	12			
M46 /	20x85	85	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾			
M16 / IG-M10	20x130	130	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾			
IG-IVI IO	20x200	200	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾			

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C45. For stones with higher strengths, the shown values are valid without conversion.

Table C51: Displacements

Anchor size	hef	δ _N / N	δνο	δN∞	δv / V	δ∨0	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0.1*N / 2.5	0*5	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,1	0,1*N _{Rk} / 3,5	2*δΝο	0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

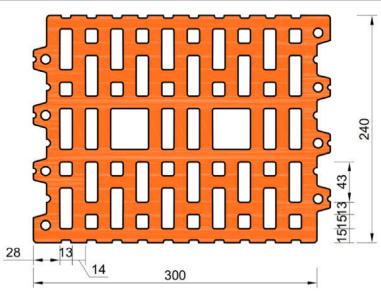
Soudal injection system VE-SF

Performances Solid clay brick 2DF
Characteristic Resistances and Displacements

Annex C 18

²⁾ V_{Rk,c} according to Annex C3

³⁾ Valid for all stone strengths with min. 10 N/mm²



Brick type: Hollow clay brick 10 DF

Table C52: Stone description

Brick type		Hollow clay brick HLZ-10DF	
Density	ρ [kg/dm³]	≥ 1,25	
Compressive strength	f _b [N/mm²]	≥ 20	
Conversion factor for low strengths	$(f_b / 20)^{0.5} \le 1.0$		
Code		EN 771-1	
Producer (Country)		e.g. Wienerberger (DE)	
Brick dimensions	[mm]	300 x 240 x 249	
Drilling method		Rotary drilling	

Table C53: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 10	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 300)						
Minimum Edge Distance	C _{min}	[mm]	50						
Characteristic Spacing	Scr, II	[mm]		300					
Characteristic Spacing	Scr, ⊥	[mm]	250						
Minimum Spacing	Smin	[mm]	50						

Table C54: Reduction factors for single anchors at the edge

Tension load			Shear load								
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, V II			
•	50	1,00	→	50	0,20] • • [50	1,00			
	120	1,00		300	1,00		120	1,00			

Soudal injection system VE-SF	
Performances Hollow clay brick HLZ 10DF Description of the stone, Installation parameters, Reductionfactors	Annex C 19

Brick type: Hollow clay brick 10 DF

Table C55: Factors for anchor groups under tension load

Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,55		50	50	1,00
	120	300	2,00		120	250	2,00

Table C56: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load	-	with c ≥	with s ≥	α _g II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot, \vee\bot$
perpendicular to the free edge		50	50	0,30		50	50	0,20
		300	50	1,40		300	50	1,00
		300	300	2,00		300	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II	*	with c ≥	with s ≥	αg ⊥,V II
parallel to the free edge		50	50	1,85		50	50	1,00
		120	300	2,00		120	250	2,00

Table C57: Characteristic values of tension and shear load resistances

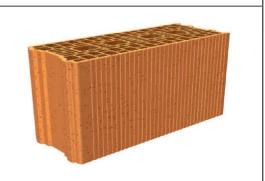
				Chara	cteristic Re	sistances v	with c > cor	and s > s _{cr}			
		An	Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr} Use condition								
Anchor size	Perforated		d/d				d/d w/d w/w				
	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	c,p		V _{Rk,b} ²⁾				
		[mm]				[kN]					
		Com	pressive	strength f	₂ ≥ 20 N/mn	n²	1)				
M8	12x80	80	2,5	2,5	2,0	2,5	2,5	2,0	8,0		
M8 / M10/	16x85	85	2,5	2,5	2,0	2,5	2,5	2,0	8,0		
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	8,0		
	20x85	85	5,0	5,0	4,5	5,0	5,0	4,5	8,0		
M12 / IG-M8	20x130	130	5,0	5,0	4,5	5,0	5,0	4,5	8,0		
	20x200	200	5,0	5,0	4,5	5,0	5,0	4,5	8,0		
N440 /	20x85	85	5,0	5,0	4,5	5,0	5,0	4,5	11,5		
M16 /	20x130	130	5,0	5,0	4,5	5,0	5,0	4,5	11,5		
IG-M10	20x200	200	5,0	5,0	4,5	5,0	5,0	4,5	11,5		

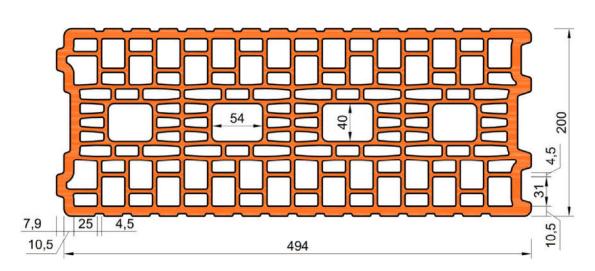
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C52. For stones with higher strengths, the shown values are valid without conversion.

Table C58: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δ∨ο

Soudal injection system VE-SF	
Performances Hollow clay brick HLZ 10DF Group factors, characteristic Resistances and Displacements	Annex C 20


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Porotherm Homebric

Table C59: Stone description

Brick type		Hollow clay brick Porotherm Homebric	
Density	ρ [kg/dm³]	≥ 0,70	
Compressive strength	f _b [N/mm ²]	≥ 10	
Conversion factor for lowe strengths	$(f_b / 10)^{0.5} \le 1.0$		
Code		EN 771-1	
Producer (Country)		e.g. Wienerberger (FR)	
Brick dimensions	[mm]	500 x 200 x 300	
Drilling method		Rotary drilling	

Table C60: Installation parameter

	•								
Anchor size					M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	C _{min}	[mm]	120						
Characteristic Specing	Scr, II	[mm]	500						
Characteristic Spacing	Scr, ⊥	[mm]	300						
Minimum Spacing	Smin	[mm]				120			

Table C61: Reduction factors for single anchors at the edge

Tension load		Shear load							
r ension load			Perpendicular to the free edge			Parallel to the free edge			
+1	with c ≥	αedge, N	1	with c ≥	αedge, ∨⊥	1	with c ≥	αedge, V II	
	120	1,00		120	0,30		120	0.60	
	120	1,00		250	0,60	Ţ	120	0,00	
	120	1,00	***************************************	500	1,00		200	1,00	

Soudal injection system VE-SF
Performances Hollow clay brick Porotherm Homebric

Description of the stone, Installation parameters, Reductionfactors

Annex C 21

Brick type: Hollow Clay brick Porotherm Homebric

Table C62: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	pint	Anchor position perpendicular to hor. joint			
-	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
	120	100	1,00		120	100	1,00
	200	100	2,00		200	100	1,20
	120	500	2,00		120	300	2,00

Table C63: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load perpendicular to the free edge		with c ≥	with s ≥	αg II,V ⊥		with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
		120	100	0,30		120	100	0,30	
		250	100	0,60		250	100	0,60	
		500	100	1,00		120	300	2,00	
		120	500	2,00				2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II	
parallel to the free edge	• •	120	100	1,00		120	100	1,00	
		120	500	2,00		120	300	2,00	

Table C64: Characteristic values of tension and shear load resistances

	Perforated sleeve		Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
		sleeve High		Use condition							
Anchor size				d/d			w/d w/w				
									All		
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature		
									ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$			$N_{Rk,b} = N_{Rk,p}$				
		[mm]				[kN]					
		Con	pressive	strength f	, ≥ 10 N/mn	n ²	1)				
M8	12x80	80			1	,2			3,0		
M8 / M10/	16x85	85			1	,2			3,0		
IG-M6	16x130	130			1	,5			3,5		
M12 / M16/	20x85	85		1,2				4,0			
IG-M8 /	20x130	130			1	,5			4,0		
IG-M10	20x200	200			1	,5			4,0		

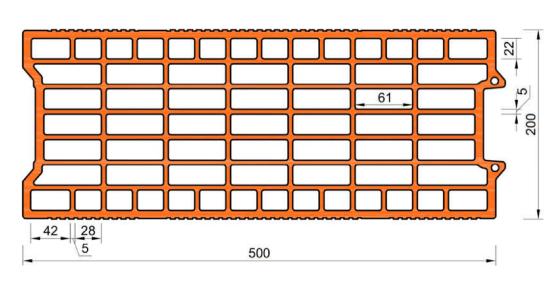
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C59. For stones with higher strengths, the shown values are valid without conversion.

Table C65: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.12*N / 2.5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5		0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow clay brick Porotherm Homebric Group factors, characteristic Resistances and Displacements	Annex C 22

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick BGV Thermo

Table C66: Stone description

Brick type		Hollow clay brick BGV Thermo
Density	ρ [kg/dm³]	≥ 0,60
Compressive strength	f _b [N/mm ²]	≥ 10
Conversion factor for lowe strengths	er compressive	$(f_b / 10)^{0.5} \le 1.0$
Code		EN 771-1
Producer (Country)		e.g. Leroux (FR)
Brick dimensions	[mm]	500 x 200 x 314
Drilling method		Rotary drilling

Table C67: Installation parameter

Anchor size				M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque T _{inst} [l		[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	C _{min}	[mm]	120						
Characteristic Spacing	Scr, II	[mm]		500					
Characteristic Spacing	Scr, ⊥	[mm]	315						
Minimum Spacing	Smin	[mm]	120						

Table C68: Reduction factors for single anchors at the edge

Tension load		Shear load						
i ension load			Perpendic	ular to the fr	ee edge	Parallel to the free edge		
1	with c ≥	αedge, N	<u> </u>	with c ≥	αedge, ∨⊥	1	with c ≥	αedge, VII
• 12	120	1,00		120	0,30		120	0,60
	120	1,00		250	0,60	Ţ	120	0,00
.,	120	1,00	***************************************	500	1,00	.;	250	1,00

Soudal injection system VE-SF	
Performances Hollow clay brick BGV Thermo Description of the stone, Installation parameters, Reductionfactors	Annex C 23

Brick type: Hollow Clay brick BGV Thermo

Table C69: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
-	with c ≥	with s ≥	αg II, N	1	with c ≥	with s ≥	αg⊥, N
	120	100	1,00		120	100	1,00
	200	100	1,70		200	100	1,10
	120	500	2,00		120	315	2,00

Table C70: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	αg II,V⊥		with c ≥	with s ≥	$\alpha_{g\perp,\vee\perp}$
perpendicular to the free	•••	120	100	1,00	•	120	100	1,00
edge		120	500	2,00		120	315	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	$lpha_{ extsf{g}} \perp_{ extsf{,V}} \scriptstyle{ extsf{II}}$
parallel to the	•	120	100	1,00		120	100	1,00
free edge		120	500	2,00		120	315	2,00

Table C71: Characteristic values of tension and shear load resistances

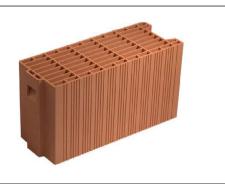
				Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$							
		And	Use condition								
Anchor size	Perforated		d/d			w/d w/w			d/d w/d w/w		
	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk}$	 к,р		V _{Rk,b} 2)				
		[mm]									
		Com	pressive	strength f	, ≥ 10 N/mn	1 ²	1)				
M8	12x80	80			0	,9			3,5		
M8 / M10/	16x85	85			0	,9	3,5				
IG-M6	16x130	130	2	2,0	1,5	2	:,0	1,5	4,0		
	20x85	85			0	,9			4,0		
M12 / IG-M8	20x130	130	2	.,0	1,5	2	:,0	1,5	4,0		
	20x200	200	2	.,0	1,5	2	:,0	1,5	4,0		
M4C /	20x85	85			0	,9			4,0		
M16 / IG-M10	20x130	130	2	:,0	1,5	2	:,0	1,5	4,0		
10-10110	20x200	200	2	2,0	1,5	2	:,0	1,5	4,0		

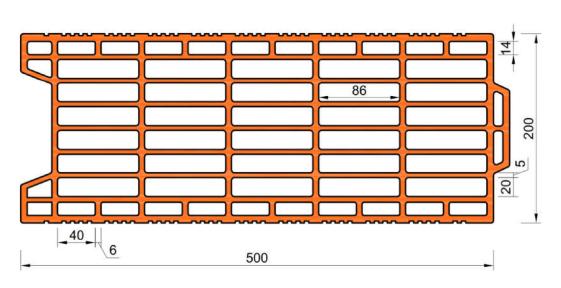
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C66. For stones with higher strengths, the shown values are valid without conversion.

Table C72: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Andrior size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.12*N / 2.5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5		0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow clay brick BGV Thermo Group factors, characteristic Resistances and Displacements	Annex C 24


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Calibric R+

Table C73: Stone description

Brick type		Hollow clay brick Calibric R+	
Density	ρ [kg/dm³]	≥ 0,60	
Compressive strength	f _b [N/mm²]	≥ 12	
Conversion factor for low strengths	$(f_b / 12)^{0.5} \le 1.0$		
Code		EN 771-1	
Producer (Country)		e.g. Leroux (FR)	
Brick dimensions	[mm]	500 x 200 x 314	
Drilling method		Rotary drilling	

Table C74: Installation parameter

Anchor size	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤2 ≤2 ≤2 ≤2 ≤2					≤ 2		
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)							
Minimum Edge Distance	Cmin	[mm]	120							
Characteristic Spacing	Scr, II	[mm]	500							
Characteristic Spacing	Scr, ⊥	[mm]	315							
Minimum Spacing	Smin	[mm]	120							

Table C75: Reduction factors for single anchors at the edge

Tension load			Shear load							
			Perpendic	ular to the fr	ee edge	Parallel to the free edge				
+1	with c ≥	αedge, N	4	with c ≥	αedge, ∨⊥	1	with c ≥	αedge, VII		
	• 120 1,00	1.00		120	0,15		120	0.30		
		1,00		250	0,30	Ţ	120	0,30		
i	120	1,00		500	1,00		250	1,00		

Soudal injection system VE-SF

Performances Hollow clay brick Calibric R+

Description of the stone, Installation parameters, Reductionfactors

Annex C 25

Brick type: Hollow Clay brick Calibric R+

Table C76: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N	1	with c ≥	with s ≥	αg⊥, N
	120	100	1,00		120	100	1,00
	175	100	1,70		175	100	1,10
	120	500	2,00		120	315	2,00

Table C77: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load		with c ≥	with s ≥	αg II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot, \vee\bot$
perpendicular to the free	•••	120	100	1,00	•	120	100	1,00
edge		120	500	2,00		120	315	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	$\alpha_{\text{g}} \bot,\! \vee \text{II}$
parallel to the free edge		120	100	1,00		120	100	1,00
		120	500	2,00		120	315	2,00

Table C78: Characteristic values of tension and shear load resistances

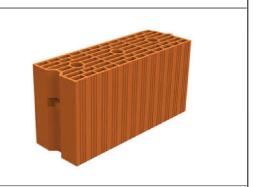
			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}									
		Effecitve Anchorage depth	Use condition									
L Anchor size	Perforated		d/d			w/d w/w			d/d w/d w/w			
	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(,p		V _{Rk,b} 2)					
		[mm]					[kN]					
		Cor	npressive	strength f	_b ≥ 12 N/mr	n²	1)	_				
M8	12x80	80	1,2	1,2	0,9	1,2	1,2	0,9	4,0			
M8 / M10/	16x85	85	1,2	1,2	0,9	1,2	1,2	0,9	5,5			
IG-M6	16x130	130	1,5	1,5	1,2	1,5	1,5	1,2	5,5			
M40 / IC Me	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	8,5			
M12 / IG-M8	20x130	130	1,5	1,5	1,2	1,5	1,5	1,2	8,5			
M16 /	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	8,5			
IG-M10	20x130	130	1,5	1,5	1,2	1,5	1,5	1,2	8,5			

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C73. For stones with higher strengths, the shown values are valid without conversion.

Table C79: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.43	0,13*N _{Rk} / 3,5	2* δΝ0	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Clay brick Calibric R+ Group factors, characteristic Resistances and Displacements	Annex C 26


²⁾ V_{Rk,c} according to Annex C3

Brick type: Hollow Clay brick Urbanbric

Table C80: Stone description

Brick type		Hollow clay brick Urbanbric	
Density	ρ [kg/dm³]	≥ 0,70	
Compressive strength	f _b [N/mm ²]	≥ 12	
Conversion factor for low strengths	$(f_b / 12)^{0.5} \le 1.0$		
Code		EN 771-1	
Producer (Country)		e.g. Imerys (FR)	
Brick dimensions	[mm]	560 x 200 x 274	
Drilling method	_	Rotary drilling	

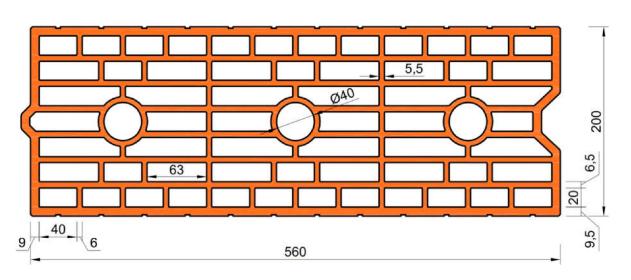


Table C81: Installation parameter

Anchor size [-] Installation torque T _{inst} [Nm]			M10	M12	M16	IG-M6	IG-M8	IG-M10	
T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)							
Cmin	[mm]	120							
Scr, II	[mm]				560				
Scr, ⊥	[mm]		275						
Smin	[mm]	100							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									

Table C82: Reduction factors for single anchors at the edge

Tension load		Shear load						
rension load			Perpendic	ular to the fr	ee edge	Paralle	el to the free	edge
	with c ≥	αedge, N	1	with c ≥	αedge, ∨⊥	1	with c ≥	αedge, VII
	120	1.00		120	0,25		120	0,50
	120	1,00		250	0,50	Ţ	120	0,50
	120	1,00	- in the second second	500	1,00	į į	250	1,00

Soudal injection system VE-SF

Performances Hollow clay brick Urbanbric

Description of the stone, Installation parameters, Reductionfactors

Annex C 27

Brick type: Hollow Clay brick Urbanbric

Table C83: Factors for anchor groups under tension load

Anchor position parallel to hor. joint				Ancho	r position perp	endicular to ho	or. joint		
-	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N		
	120	100	1,00		120	100	1,00		
	185	100	1,90		185	100	1,10		
	120	560	2,00		120	275	2,00		

Table C84: Factors for anchor groups under shear load

	Anchor	Anchor position parallel to hor. joint				osition perpe	endicular to h	or. joint
Shear load	1	with c ≥	with s ≥	αg II,∨⊥		with c ≥	with s ≥	$\alpha_{g\perp,\vee\perp}$
perpendicular to the free	• • •	120	100	1,00	•	120	100	1,00
edge		120	560	2,00		120	275	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the	•	120	100	1,00	1	120	100	1,00
free edge		120	560	2,00		120	275	α _{g ⊥, ∨ ⊥} 1,00 2,00 α _{g ⊥, ∨ II}

Table C85: Characteristic values of tension and shear load resistances

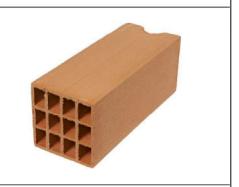
			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
		Effecitve Anchorage depth	Use condition								
Anchor size	Perforated		d/d				d/d w/d w/w				
	sleeve	An	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h_{ef}		$N_{Rk,b} = N_{Rk}$:,p		$N_{Rk,b} = N_{Rk}$	x,p	V _{Rk,b} 2)		
		[mm]				[kN]					
		Com	pressive	strength f	≥ 12 N/mn	1 ²	1)				
M8	12x80	80	1,2	1,2	0,9	1,2	1,2	0,9	4,5		
M8 / M10/	16x85	85	1,2	1,2	0,9	1,2	1,2	0,9	4,5		
IG-M6	16x130	130	3,0	3,0	2,5	3,0	3,0	2,5	4,5		
M40 / IC MO	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	5,0		
M12 / IG-M8	20x130	130	3,0	3,0	2,5	3,0	3,0	2,5	5,0		
M16 / IC M10	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	5,0		
M16 / IG-M10	20x130	130	3,0	3,0	2,5	3,0	3,0	2,5	5,0		

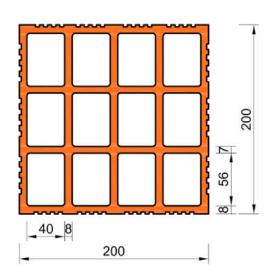
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C80. For stones with higher strengths, the shown values are valid without conversion.

Table C86: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨0
M16	all	0,13			0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Clay brick Urbanbric Group factors, characteristic Resistances and Displacements	Annex C 28


²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Brique creuse C40

Table C87: Stone description

Brick type		Hollow clay brick Brique creuse C40	
Density	ρ [kg/dm³]	≥ 0,70	
Compressive strength	f _b [N/mm ²]	≥ 12	
Conversion factor for low strengths	$(f_b / 12)^{0.5} \le 1.0$		
Code		EN 771-1	
Producer (Country)		e.g. Terreal (FR)	
Brick dimensions	[mm]	500 x 200 x 200	
Drilling method		Rotary drilling	
ı			

Table C88: Installation parameter

Anchor size [-]			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2 ≤ 2 ≤ 2 ≤ 2			≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						
Minimum Edge Distance	C _{min}	[mm]	120						
Characteristic Spacing S _{cr, II}		[mm]				500			
Characteristic Spacing	Scr, ⊥	[mm]	120						
Minimum Spacing	Smin	[mm]	200						

Table C89: Reduction factors for single anchors at the edge

Tension load			Shear load						
			Perpendic	ular to the fr	ee edge	Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, V II	
•	120	1,00		120	0,83	1 <u>†</u>	120	1,00	
	120	1,00		500	1,00		250	1,00	

Soudal injection system VE-SF	
Performances Hollow clay brick Brique Creuse C40 Description of the stone, Installation parameters, Reductionfactors	Annex C 29

Brick type: Hollow	Clay	brick Brique cr	euse C40
--------------------	------	-----------------	----------

Table C90: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥ with s ≥		Ctg II, N		with c ≥	with s ≥	$lpha_{ extsf{g}}oldsymbol{\perp}$, N
	120	500	2,00		120	200	2,00

Table C91: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint				
Shear load perpendicular to the free edge		with c ≥	with s ≥	α _g II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}}\bot, \vee\bot$	
		120	500	2,00		120	200	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	$\alpha_{\text{g}} \bot,\! \vee \! \parallel$	
parallel to the free edge		120	500	2,00		120	200	2,00	

Table C92: Characteristic values of tension and shear load resistances

	Perforated			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
		Effecitve Anchorage depth		Use condition								
			d/d			w/d w/w			d/d w/d w/w			
Anchor size	sleeve	АA							All			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature			
									ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$			$N_{Rk,b} = N_{Rk}$,,p	V _{Rk,b} 2)			
		[mm]				[kN]						
		Com	pressive	strength f	, ≥ 12 N/mn	1 ²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
M40/IC Me	20x85	85	1,2	1,2	0,9	1,2	1,2	0,9	1,5			
M12 / IG-M8	20x130	130										
M16 /	20x85	85										
IG-M10	20x130	130										

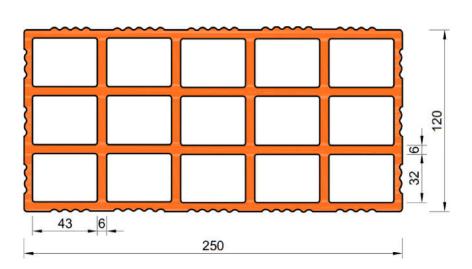
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C87. For stones with higher strengths, the shown values are valid without conversion.

Table C93: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Alichor Size	[mm]	[mm/kN]	[mm/kN] [mm]		[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.40*N / 2.5	048	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Clay brick Brique Creuse C40 Group factors, characteristic Resistances and Displacements	Annex C 30

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Blocchi Leggeri

Table C94: Stone description

Brick type		Hollow clay brick Blocchi Leggeri
Density	ρ [kg/dm³]	≥ 0,60
Compressive strength	f _b [N/mm ²]	≥ 12
Conversion factor for low strengths	er compressive	$(f_b / 12)^{0.5} \le 1.0$
Code		EN 771-1
Producer (Country)		e.g. Wienerberger (IT)
Brick dimensions	[mm]	250 x 120 x 250
Drilling method		Rotary drilling

Table C95: Installation parameter

	•									
Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)							
Minimum Edge Distance	Cmin	[mm]	60							
Characteristic Spacing	Scr, II	[mm]	250							
Characteristic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	100							

Table C96: Reduction factors for single anchors at the edge

Tension load			Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, VII		
•	60	1,00	→	60	0,40] <u>†</u>	60	0,40		
	120	1,00		250	1,00		120	1,00		

Soudal injection system VE-SF	
Performances Hollow clay brick Blocchi Leggeri Description of the stone, Installation parameters, Reductionfactors	Annex C 31

Brick type: Hollow Clay brick Blocchi Leggeri

Table C97: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	60	100	1,00		60	100	2,00
	120 250 2,00		2,00		120	250	2,00

Table C98: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint				
Shear load perpendicular to the free edge	+	with c ≥	with s ≥	α _g II,V ⊥	1	with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
		60	100	0,40		60	100	0,40	
		250	100	1,00		250	100	1,00	
		250	250	2,00		250	250	2,00	
Shear load		with c ≥	with s ≥	αg II,V II	ļ	with c ≥	with s ≥	αg ⊥,V II	
parallel to the		60	100	0,40	*	60	100	0,40	
free edge		120	100	1,00		120	100	1,00	
		120	250	2,00		120	250	2,00	

Table C99: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}				
				Use condition								
		Effecitve Anchorage depth					w/d		d/d			
		Effecitve nchoragi depth		d/d			w/w		w/d			
Anchor size	Perforated	쁆호ෂ		ı	T			Г	w/w			
,	sleeve	₽₹							All			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperature			
									ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	(,p		$N_{Rk,b} = N_{Rk,p} \qquad \qquad V_{Rk,b}^{2)}$					
		[mm]				[kN]						
		Com	pressive	strength f	, ≥ 12 N/mn	1 ²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
	20x85	85										
M12 / IG-M8	20x130	130	0,6	0,6	0,6	0,6	0,6	0,6	3,5			
	20x200	200										
M4C /	20x85	85										
M16 / IG-M10	20x130	130										
	20x200	200										

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C94. For stones with higher strengths, the shown values are valid without conversion.

Table C100: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Aliciloi Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0.42*NL / 2.5	0*5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5	2 *δΝ0	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

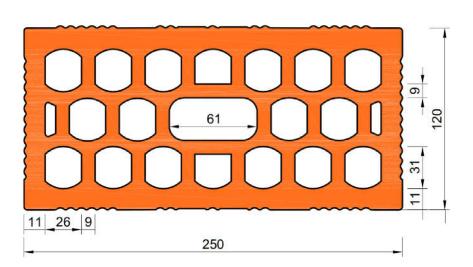
Soudal injection system VE-SF

Performances Hollow Clay brick Blocchi Leggeri

Group factors, characteristic Resistances and Displacements

Annex C 32

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow Clay brick Doppio Uni

Table C101: Stone description

	Hollow clay brick Doppio Uni	
ρ [kg/dm³]	≥ 0,90	
f _b [N/mm²]	≥ 28	
Conversion factor for lower compressive strengths		
	EN 771-1	
	e.g. Wienerberger (IT)	
[mm]	250 x 120 x 120	
	Rotary drilling	
	f _b [N/mm ²] er compressive	

Table C102: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 2						
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: $c_{cr} = 250$)						
Minimum Edge Distance	C _{min}	[mm]	100						
Characteristic Spacing	Scr, II	[mm]	250						
Characteristic Spacing	Scr, ⊥	[mm]	120						
Minimum Spacing	Smin	[mm]	100						

Table C103: Reduction factors for single anchors at the edge

Tension load			Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, ∨ II		
•	100	1,00	→	100	0,50] • • [100	1,00		
	120	1,00		250	1,00		120	1,00		

Soudal injection system VE-SF	
Performances Hollow clay brick Doppio Uni Description of the stone, Installation parameters, Reductionfactors	Annex C 33

Brick type: Hollow Clay brick Doppio Uni

Table C104: Factors for anchor groups under tension load

Anchor position parallel to hor. joint				Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	100	100	1,00		100	120	2,00	
	120	250	2,00		120	120	2,00	

Table C105: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint				
Shear load		with c ≥	with s ≥	α _g II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
perpendicular	•••	100	100	1,00	•	100	100	1,00	
to the free edge		250	250	2,00		250	120	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II	
parallel to the	•	100	100	1,00		100	100	1,00	
free edge		120	250	2,00		120	120	2,00	

Table C106: Characteristic values of tension and shear load resistances

			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}									
			Use condition									
	Perforated	Effecitve Anchorage depth		d/d			d/d w/d w/w					
Anchor size	sleeve	And	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	τ, p		$N_{Rk,b} = N_{Rk,p}$					
		[mm]				[kN]						
		Com	pressive	strength f	, ≥ 28 N/mn	1 ²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
	20x85	85										
M12 / IG-M8	20x130	130	1,2	1,2	0,9	1,2	1,2	0,9	2,5			
	20x200	200										
N40 /	20x85	85										
M16 / IG-M10	20x130	130										
IG-IVI 10	20x200	200										

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C101. For stones with higher strengths, the shown values are valid without conversion.

Table C107: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Alichoi size	[mm] [mr		[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	0*5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	all	0,13		2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨ο

Soudal injection system VE-SF	
Performances Hollow Clay brick Doppio Uni Group factors, characteristic Resistances and Displacements	Annex C 34

²⁾ V_{Rk,c} according to Annex C3

Brick type: Hollow clay brick Coriso WS07 with insulation

Table C108: Stone description

Brick type		Hollow clay brick Coriso WS07		
Insulationmaterial		Rock wool		
Density	$ ho$ [kg/dm 3]	≥ 0,55		
Compressive strength	f _b [N/mm ²]	≥ 6		
Conversion factor for lowe strengths	Conversion factor for lower compressive strengths			
Code		EN 771-1		
Producer (Country)		e.g. Unipor (DE)		
Brick dimensions	[mm]	248 x 365 x 249		
Drilling method		Rotary drilling		

Table C109: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 5 ≤ 5 ≤ 10 ≤ 10 ≤ 5 ≤ 5						
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c_{cr} = 250)						
Minimum Edge Distance	Cmin	[mm]	50						
Characteristic Specing	Scr, II	[mm]	250						
Characteristic Spacing	Scr, ⊥	[mm]	250						
Minimum Spacing	Smin	[mm]	50						

Table C110: Reduction factors for single anchors at the edge

Tension load				Shear load							
· '	CHSIOH IOAU		Perpendicular to the free edge			Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, VII			
•	50	1,00	→	50	0,30] • •	50	1,00			
	120 1,00			250	1,00		120	1,00			

Soudal injection system VE-SF

Performances Hollow clay brick Coriso WS07 with insulation

Description of the stone, Installation parameters, Reductionfactors

Annex C 35

Brick type: Hollow clay brick Coriso WS07 with insulation

Table C111: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,50		50	50	1,00	
	120	250	2,00		120	250	2,00	

Table C112: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load perpendicular to the free edge	+	with c ≥	with s ≥	α _g II,∨⊥	<u> </u>	with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
		50	50	0,40		50	50	0,40	
		250	50	1,00		250	50	1,20	
		250	250	2,00		250	250	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II	
parallel to the	•	50	50	1,65	1 1	50	50	1,00	
free edge		120	250	2,00		120	250	2,00	

Table C113: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	with c ≥ c _{cr}	and s ≥ s _{cr}				
				Use condition								
Angharaina	Perforated	Effecitve Anchorage depth		d/d			d/d w/d w/w					
Anchor size	sleeve	An	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с ,р	$N_{Rk,b} = N_{Rk,p}$ $V_{Rk,b}^{2}$						
		[mm]				[kN]						
		Con	pressive	strength f	, ≥ 6 N/mm ²	2	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130										
	20x85	85										
M12 / IG-M8	20x130	130	1,5	1,5	1,5	1,5	1,5	1,5	5,0			
M16 /	20x200	200										
	20x85	85										
	20x130	130										
IG-M10	20x200	200										

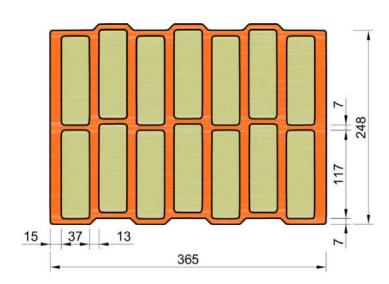
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C108. For stones with higher strengths, the shown values are valid without conversion.

Table C114: Displacements

Anchor size	hef	δn / N	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0.40*NL / 2.5	0***	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Clay brick Coriso WS07 with insulation Group factors, characteristic Resistances and Displacements	Annex C 36

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick T7 MW with insulation

Table C115: Stone description

Brick type		Hollow clay brick T7 MW
Insulation material		Rock wool
Density	ρ [kg/dm³]	≥ 0,59
Compressive strength	f _b [N/mm ²]	≥ 8
Conversion factor for lowe strengths	er compressive	$(f_b / 8)^{0.5} \le 1.0$
Code		EN 771-1
Producer (Country)		e.g. Wienerberger (DE)
Brick dimensions	[mm]	248 x 365 x 249
Drilling method		Rotary drilling

Table C116: Installation parameter

Anchor size						M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm] ≤5 ≤5 ≤10 ≤10 ≤5 ≤5						≤ 5	≤ 5
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)						
Minimum Edge Distance	C _{min}	[mm]				50			
Characteristic Spacing	Scr, II	[mm]				250			
Characteristic Spacing	Scr, ⊥	[mm]	m] 250						
Minimum Spacing	Smin	[mm]				50			

Table C117: Reduction factors for single anchors at the edge

T	Tension load			Shear load							
'	Chision load		Perpendicular to the free edge			Parallel to the free edge					
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, ∨ II			
•	50	1,00	→	50	0,35] <u>•</u>	50	1,00			
120 1,00				250	1,00		120	1,00			

Soudal injection system VE-SF

Performances Hollow clay brick T7 MW with insulation

Description of the stone, Installation parameters, Reductionfactors

Annex C 37

Brick type: Hollow clay brick T7 MW with insulation

Table C118: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	pint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	50	50	1,40		50	50	1,15
	120	250	2,00		120	250	2,00

Table C119: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular to the free edge	+	with c ≥	with s ≥	α _g II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
		50	50	0,60		50	50	0,40
		250	50	1,55		250	50	1,00
		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the	•	50	50	2,00		50	50	1,20
free edge		120	250	2,00		120	250	2,00

Table C120: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances v	vith c ≥ c _{cr}	and s ≥ s _{cr}				
				Use condition								
Angharaina	Perforated	Effecitve Anchorage depth		d/d			d/d w/d w/w					
Anchor size	sleeve	Ang	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	с ,р		V _{Rk,b} ²⁾					
		[mm]				[kN]						
		Com	pressive	strength f	, ≥ 8 N/mm²	2	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130							2.0			
	20x85	85							3,0			
M12 / IG-M8	20x130	130	2,0	2,0	1,5	2,0	2,0	1,5				
	20x200	200										
N440 /	20x85	85										
M16 /	20x130	130							4,5			
IG-M10	20x200	200										

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C115. For stones with higher strengths, the shown values are valid without conversion.

Table C121: Displacements

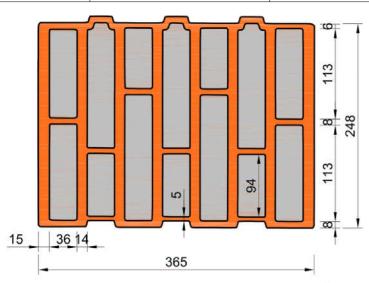
Anchor size	hef	δn / N	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	vI16 all	,			0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal i	injection	system	VE-SF
----------	-----------	--------	--------------

Performances Hollow Clay brick T7 MW with insulationGroup factors, characteristic Resistances and Displacements

Annex C 38

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick T8 P with insulation

Table C122: Stone description

Brick type		Hollow clay brick T8 P	
Insulation material		Perlite	
Density	ρ [kg/dm³]	≥ 0,56	
Compressive strength	f _b [N/mm ²]	≥ 6	
Conversion factor for lowe strengths	$(f_b / 6)^{0,5} \le 1,0$		
Code		EN 771-1	
Producer (Country)		e.g. Wienerberger (DE)	
Brick dimensions	[mm]	248 x 365 x 249	
Drilling method		Rotary drilling	

Table C123: Installation parameter

Anchor size	•			M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)							
Minimum Edge Distance	C _{min}	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	250							
Characteristic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	50							

Table C124: Reduction factors for single anchors at the edge

T	Tension load			Shear load								
Tension load			Perpendic	ular to the fr	ee edge	Parallel to the free edge						
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, V II				
•	50	1,00	→	50	0,25] <u>•</u>	50	1,00				
	120	1,00		250	1,00		120	1,00				

Soudal injection system VE-SF

Performances Hollow clay brick T8 P with insulation

Description of the stone, Installation parameters, Reductionfactors

Annex C 39

Brick type: Hollow clay brick T8 P with insulation

Table C125: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,30		50	50	1,10	
	120	250	2,00		120	250	2,00	

Table C126: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load perpendicular to the free		with c ≥	with s ≥	α _g II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
		50	50	0,40		50	50	0,30	
		250	50	1,35		250	50	1,20	
edge		250	250	2,00		250	250	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II	
parallel to the	•	50	50	1,70		50	50	1,00	
free edge		120	250	2,00		120	250	2,00	

Table C127: Characteristic values of tension and shear load resistances

			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}										
		Effecitve Anchorage depth		Use condition									
Anchor size	Perforated			d/d			d/d w/d w/w						
	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges				
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$				V _{Rk,b} ²⁾						
		[mm]				[kN]							
		Com	pressive	strength f	≥ 6 N/mm ²	2	1)						
M8	12x80	80											
M8 / M10/	16x85	85					1,5						
IG-M6	16x130	130	4.5	4.5	4.5	4.5		4.5	4.5				
	20x85	85	1,5	1,5	1,5	1,5		1,5	4,5				
M12 / IG-M8	20x130	130											
	20x200	200											
M16 / IG-M10	20x85	85											
	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	7,0				
	20x200	200		_,-	, -								

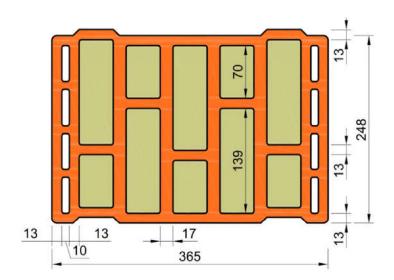
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C122. For stones with higher strengths, the shown values are valid without conversion.

Table C128: Displacements

Anchor size	hef	δn / N	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.13	0,13*N _{Rk} / 3,5	2*δΝ0	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Clay brick T8 P with insulation Group factors, characteristic Resistances and Displacements	Annex C 40

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow clay brick Thermoplan MZ90-G with insulation

Table C129: Stone description

Brick type		Hollow clay brick Thermoplan MZ90-G			
Insulation material		Rock wool			
Density	ρ [kg/dm³]	≥ 0,68			
Compressive strength	f _b [N/mm ²]	≥ 12			
Conversion factor for lowe strengths	Conversion factor for lower compressive strengths				
Code		EN 771-1			
Producer (Country)		e.g. Mein Ziegelhaus (DE)			
Brick dimensions	[mm]	248 x 365 x 249			
Drilling method		Rotary drilling			

Table C130: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c_{cr} = 250)							
Minimum Edge Distance	C _{min}	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	250							
Characteristic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	50							

Table C131: Reduction factors for single anchors at the edge

Tension load			Shear load						
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, V II	
•	50	1,00	→	50	0,25	1	50	1,00	
	120	1,00		250	1,00		120	1,00	

Soudal injection system VE-SF

Performances Hollow clay brick Thermoplan MZ90-G with insulation Description of the stone, Installation parameters, Reductionfactors

Annex C 41

Brick type: Hollow clay brick Thermoplan MZ90-G with insulation

Table C132: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	1,00		50	50	1,00	
	120	250	2,00		120	250	2,00	

Table C133: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular		with c ≥	with s ≥	α _g II,∨⊥		with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
		50	50	0,75		50	50	0,50
to the free		250	50	2,00		250	50	1,70
edge		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
parallel to the	•	50	50	1,65		50	50	1,15
free edge		120	250	2,00		120	250	2,00

Table C134: Characteristic values of tension and shear load resistances

				Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
		Effecitve Anchorage depth		Use condition								
	Perforated			d/d			d/d w/d w/w					
Anchor size	sleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$	c,p	$N_{Rk,b} = N_{Rk,p}$			V _{Rk,b} ²⁾			
		[mm]				[kN]						
		Com	pressive	strength f	₂ ≥ 12 N/mn	n²	1)					
M8	12x80	80										
M8 / M10/	16x85	85										
IG-M6	16x130	130	2.0	2.0	2.5	2.0	2.0	2.5	4.0			
	20x85	85	3,0	3,0	2,5	3,0	3,0	2,5	4,0			
M12 / IG-M8	20x130	130										
	20x200	200										
M16 / IG-M10	20x85	85					3,5	3,0				
	20x130	130	3,5	3,5	3,0	3,5			7,5			
	20x200	200		, -								

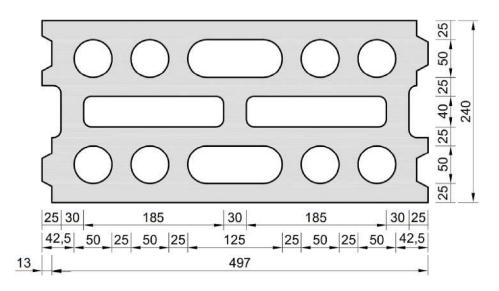
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C129. For stones with higher strengths, the shown values are valid without conversion.

Table C135: Displacements

			1				
Anchor size	hef	δn / N	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13			0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow Clay brick MZ90-G with insulation Group factors, characteristic Resistances and Displacements	Annex C 42

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow light weight concrete brick HBL 16DF

Table C136: Stone description

Brick type		Hollow light weight concrete brick HBL 16DF
Density	ρ [kg/dm³]	≥ 1,0
Compressive strength	f _b [N/mm²]	≥ 3,1
Conversion factor for low strengths	er compressive	$(f_b/3,1)^{0,5} \le 1,0$
Code		EN 771-3
Producer (Country)		e.g. KLB Klimaleichtblock (DE)
Brick dimensions	[mm]	500 x 250 x 240
Drilling method		Rotary drilling

Table C137: Installation parameter

Anchor size		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤2 ≤5 ≤5 ≤5 ≤5						≤ 5	
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c_{cr} = 250)							
Minimum Edge Distance	C _{min}	[mm]	50							
Characteristic Spacing	Scr, II	[mm]	500							
Characteristic Spacing	Scr, ⊥	[mm]	250							
Minimum Spacing	Smin	[mm]	50							

Table C138: Reduction factors for single anchors at the edge

_	Tension load			Shear load						
'	Chision load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, VII		
•	50	1,00	→	50	0,30] •	50	1,00		
	120	1,00		250	1,00		120	1,00		

Soudal injection system VE-SF	
Performances Hollow light weight concrete brick HBL 16DF Description of the stone, Installation parameters, Reductionfactors	Annex C 43

Brick type: Hollow light weight concrete brick HBL 16DF

Table C139: Factors for anchor groups under tension load

An	chor position pa	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint				
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
• •	50	50	2,00		50	50	1,55	
	120	500	2,00		120	250	2,00	

Table C140: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint				
Shear load perpendicular to the free	+	with c ≥	with s ≥	α _g II,∨⊥	1	with c ≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
		50	50	0,60		50	50	0,35	
		120	50	2,00		120	50	1,15	
edge		120	500	2,00		120	250	2,00	
	1	with c ≥	with s ≥	αg II,V II	-	with c ≥	with s ≥	αg ⊥,V II	
Shear load parallel to the	•	50	50	1,30	*	50	50	1,00	
free edge		120	250	2,00		30	50	1,00	
		120	500	2,00		120	250	2,00	

Table C141: Characteristic values of tension and shear load resistances

				Chara	cteristic Re	sistances w	rith c ≥ c _{cr}	and s ≥ s _{cr}			
		Effecitve Anchorage depth	Use condition								
	Perforated		d/d			w/d w/w			d/d w/d w/w		
Anchor size	Anchor size sleeve			80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges		
		h_{ef}		$N_{Rk,b} = N_{Rk,p}$ $N_{Rk,b} = N_{Rk,p}$					V _{Rk,b} ²⁾		
		[mm]				[kN]					
		Com	pressive s	strength f	<u>,</u> ≥ 3,1 N/mr	n ² 1)				
M8 / M10/	16x85	85	1,2	1,2	0,9	1,2	1,2	0,9	2,0		
IG-M6	16x130	130	1,2	1,2	0,9	1,2	1,2	0,9	2,0		
	20x85	85									
M12 / IG-M8	20x130	130							3,0		
	20x200	200	4.5	4.5	4.0	4.5	4.5	5 1,2			
N40 /	20x85	85	1,5	1,5	1,2	1,5	1,5				
M16 /	20x130	130							5,0		
IG-M10	20x200	200									

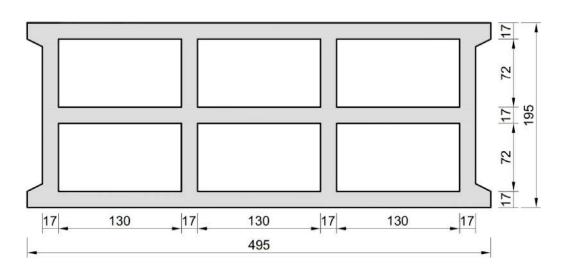
For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C136. For stones with higher strengths, the shown values are valid without conversion.

Table C142: Displacements

Anchor size	hef	δn / N	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	0***	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	U, 13 NRk / 3,5	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances Hollow light weight concrete brick HBL 16DF Group factors, characteristic Resistances and Displacements	Annex C 44

²⁾ V_{Rk,c} according to Annex C3



Brick type: Hollow concrete brick Bloc Creux B40

Table C143: Stone description

Brick type		Hollow concrete brick Bloc Creux B40	
Density	ρ [kg/dm³]	≥ 0,8	
Compressive strength	f _b [N/mm ²]	≥ 5,2	
Conversion factor for low strengths	$(f_b / 5,2)^{0,5} \le 1,0$		
Code		EN 772-1	
Producer (Country)		e.g. Leroux (FR)	
Brick dimensions	[mm]	500 x 200 x 200	
Drilling method		Rotary drilling	

Table C144: Installation parameter

Anchor size [-			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤4 ≤4 ≤4 ≤4 ≤4 ≤ 4 ≤ 4 ≤ 4 ≤ 4 ≤ 4 ≤ 4					≤ 4		
Char. Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 170)							
Minimum Edge Distance	C _{min}	[mm]	50							
Characteristic Spacing S _{cr, II}		[mm]	170							
Characteristic Spacing	Scr, ⊥	[mm]	200							
Minimum Spacing	Smin	[mm]	50							

Table C145: Reduction factors for single anchors at the edge

Tension load			Shear load							
'	ension load		Perpendic	ular to the fr	ee edge	Parallel to the free edge				
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, V II		
•	50	1,00	→	50	0,35] • • [50	1,00		
	120	1,00		170	1,00		120	1,00		

Soudal injection system VE-SF	
Performances Hollow concrete brick Bloc Creux B40 Description of the stone, Installation parameters, Reductionfactors	Annex C 45

Brick type: Hollow concrete brick Bloc Creux B40

Table C146: Factors for anchor groups under tension load

An	chor position p	arallel to hor. jo	oint	Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
	50	50	1,50	•	50	50	1,40
	50	170	2,00		50	200	2,00
· ·	120	170	2,00		120	200	2,00

Table C147: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular to the free edge		with c ≥	with s ≥	αg II,V ⊥		with c ≥	with s ≥	$\alpha_{g\perp,\vee\perp}$
	•••	50	50	0,55	•	50	50	0,35
		120	50	1,30		120	50	0,85
		120	170	2,00	1/	120	200	2,00
Shear load parallel to the free edge		with c ≥	with s ≥	αg II,V II	ļ <u>-</u>	with c ≥	with s ≥	αg ⊥,V II
	•	50	50	1,10		50	50	1,00
		120	170	2.00		50	200	2,00
	opening the second		170	2,00		120	200	2,00

Table C148: Characteristic values of tension and shear load resistances

			1						29			
	hor size Perforated sleeve			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
		eve H Y		Use condition								
			d/d				w/d w/w	d/d w/d w/w				
Alichor Size			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All Temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk}$,p		$N_{Rk,b} = N_{Rk}$.,p	V _{Rk,b} ²⁾			
		[mm]				[kN]						
		Com	pressive	strength f	≥ 5,2 N/mr	n²	1)					
M8 / M10/ IG-M6	16x130	130										
M12 / IG-M8	20x130	130	2,0	1,5	1,2	2,0	1,5	1,2	6,0			
M16 / IG-M10	20x130	130										

For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C143. For stones with higher strengths, the shown values are valid without conversion.

Table C149: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.12	0,13*N _{Rk} / 3,5	0*5	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,13	U, 13 NRk / 3,5	2 *δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF	
Performances hollow concrete brick Bloc Creux B40 Group factors, characteristic Resistances and Displacements	Annex C 46

²⁾ V_{Rk,c} according to Annex C3

Brick type: Solid light weight concrete brick

Table C150: Stone description

Brick type		Solid light weight concrete brick
Density	ρ [kg/dm³]	≥ 0,6
Compressive strength	f _b [N/mm²]	≥ 2
Conversion factor for lowe strengths	er compressive	$(f_b / 2)^{0.5} \le 1.0$
Code		EN 771-3
Producer (Country)		e.g. Bisotherm (DE)
Brick dimensions	[mm]	≥ 240 x 300 x 113
Drilling method		Rotary drilling

Table C151: Installation parameter

Anchor size	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Char. Edge distance	Ccr	[mm]	150						
Minimum Edge Distance	Cmin	[mm]	60						
Characteristic Spacing	Scr, II	[mm]	300						
Characteristic Spacing	Scr, ⊥	[mm]	300						
Minimum Spacing	Smin	[mm]	120						

Table C152: Reduction factors for single anchors at the edge

Tension load			Shear load						
rension load			Perpendicular to the free edge			Parallel to the free edge			
	with c ≥	αedge, N		with c ≥	αedge, ∨⊥		with c ≥	αedge, ∨ II	
•	60	1,00	→	60	0,25	<u> </u>	60	0,40	
	150	1,00		150	1,00		100	1,00	

Table C153: Factors for anchor groups under tension load

An	Anchor position parallel to hor. joint			Anchor position perpendicular to hor. joint			
	with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N
• •	60	120	1,00		60	120	1,00
	150	300	2,00		150	300	2,00

Table C154: Factors for anchor groups under shear load

	Anchor	position pa	rallel to hor.	. joint	Anchor position perpendicular to hor. joint			
Shear load perpendicular to the free edge		with c ≥	with s ≥	αg II,V ⊥	1	with c ≥	with s ≥	$\alpha_{\text{g}}\bot, \vee\bot$
		60	120	0,25		60	120	0,25
		150	120	1,00		150	120	1,00
		150	300	2,00		150	300	2,00
Shear load parallel to the free edge		with c ≥	with s ≥	αg II,V II		with c ≥	with s ≥	αg ⊥,V II
		60	120	0,40	*	60	120	0,40
		100	120	1,00		100	120	1,00
Hoo dage		150	300	2,00		150	300	2,00

Soudal injection system VE-SF	
Performances Solid light weight concrete brick Description of the stone, Installation parameters, Reduction- and Group factors	Annex C 47

Brick type:	Solid light	weight co	oncrete bi	ick							
Table C155:	Characteri	istic values	of tensio	n and she	ar load resi	istances					
			Characteristic Resistances with c ≥ c _{cr} and s ≥ s _{cr}								
		4				Use condit	tion				
		ve age					w/d		d/d		
		Effecitve Anchorage depth		d/d			w/d				
Anchor size	Perforated	Effe and							w/w		
	sleeve	— ∢ — h _{ef}	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All		
			70 0/24 0	00 0/30 0				120 0//2 0	ranges		
				$N_{Rk,b} = N_{Rk}$:,p	$N_{Rk,b} = N_{Rk,p}$			V _{Rk,b} ²⁾		
		[mm]			71	[kN]	,	71	,		
			Compress	sive streng	th f _b ≥ 2 N/	mm ^{2 1)}					
M8	-	80									
M10 / IG-M6	-	90	2.0	2.5	2.0	2.5	2.0	4.5			
M12 / IG-M8	-	100	3,0	2,5	2,0	2,5	2,0	1,5			
M16 / IG-M10	-	100									
M8	12x80	80									
M8 / M10/	16x85	85									
IG-M6	16x130	130							3,0		
	20x85	85									
M12 / IG-M8	20x130	130	2,5	2,5	2,0	2,5	2,0	1,5			
	20x200	200									

¹⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C150. For stones with higher strengths, the shown values are valid without conversion.

M16/

IG-M10

20x85

20x130

20x200

85

130

200

Table C156: Displacements

Anchor size	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12, IG-M6 – M10	all	0.1	0,1*N _{Rk} / 3,5	2*δΝο	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨0
M16	all	0,1			0,1	0,1*V _{Rk} / 3,5	1,5*δ∨0

Soudal injection system VE-SF

Performances Solid light weight concrete brick
Characteristic Resistances and Displacements

Annex C 48

²⁾ V_{Rk,c} according to Annex C3